Question
Mathematics Question on Matrices
If A is a square matrix and I is an identity matrix such that A2=A, then A(I−2A)3+2A3 is equal to:
A
I+A
B
I+2A
C
I−A
D
A
Answer
A
Explanation
Solution
A(I−2A)3+2A3 (Since A2=A)
⇒⇒A(I−2A)3+2A
⇒A[I3−3I2(2A)+3I(2A)2−(2A)3]+2A
⇒A[I3−6I2A+12IA2−8A3]+2A
⇒A[I3−6I2A+12IA2−8A]+2A we know that (I3=I)
⇒A[I−6IA+12A−8A]+2A
⇒A[I−14A+12A]+2A
⇒A[I−2A]+2A
⇒AI−2A2+2A
⇒A−2A+2A
⇒A