Solveeit Logo

Question

Mathematics Question on Matrices

If AA is a square matrix and II is an identity matrix such that A2=AA^2 = A, then A(I2A)3+2A3A(I - 2A)^3 + 2A^3 is equal to:

A

I+A

B

I+2A

C

I−A

D

A

Answer

A

Explanation

Solution

A(I2A)3+2A3A(I - 2A)^3 + 2A^3 (Since A2=AA^2 = A)

A(I2A)3+2A\Rightarrow A(I - 2A)^3 + 2A

A[I33I2(2A)+3I(2A)2(2A)3]+2AA[I^3 - 3I^2(2A) + 3I(2A)^2 - (2A)^3] + 2A

A[I36I2A+12IA28A3]+2AA[I^3 - 6I^2A + 12IA^2 - 8A^3] + 2A

A[I36I2A+12IA28A]+2AA[I^3 - 6I^2A + 12IA^2 - 8A] + 2A we know that (I3=I)( I^3= I)

A[I6IA+12A8A]+2AA[I - 6IA + 12A - 8A] + 2A

A[I14A+12A]+2AA[I - 14A + 12A] + 2A

A[I2A]+2AA[I - 2A] + 2A

AI2A2+2AAI - 2A^2 + 2A

A2A+2AA - 2A + 2A

AA