Question
Question: If A is a square matrix and $e^A$ is defined as $e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + ......
If A is a square matrix and eA is defined as eA=I+A+2!A2+3!A3+.... upto infinity = 21[f(x)g(x)g(x)f(x)], where A = [XXXX], and I being the identity matrix of same order as A then :
If ∫f(x)g(x)dx=log(eαx+1)+βx+C then value of (12α+β) is : (where C is constant of integration)

23
Solution
Let the given matrix be A=[XXXX]. We need to compute eA.
The definition of eA is given by the matrix exponential series: eA=I+A+2!A2+3!A3+....
Let's calculate the powers of A. A2=A⋅A=[XXXX][XXXX]=[X2+X2X2+X2X2+X2X2+X2]=[2X22X22X22X2]=2X2[1111]. Let A0=[1111]. Then A=XA0. A2=2X2A0. A3=A2A=(2X2A0)(XA0)=2X3A02. Let's compute A02: A02=[1111][1111]=[2222]=2[1111]=2A0. So, A3=2X3(2A0)=4X3A0=22X3A0. A4=A3A=(22X3A0)(XA0)=22X4A02=22X4(2A0)=23X4A0. In general, for n≥1, An=2n−1XnA0=2n−1Xn[1111].
Now substitute this into the series for eA: eA=I+∑n=1∞n!An=[1001]+∑n=1∞n!2n−1Xn[1111] eA=[1001]+21∑n=1∞n!2nXn[1111]=[1001]+21(∑n=1∞n!(2X)n)[1111]. The series ∑n=1∞n!zn=ez−1. Let z=2X. So, ∑n=1∞n!(2X)n=e2X−1. eA=[1001]+21(e2X−1)[1111]=[1001]+[2e2X−12e2X−12e2X−12e2X−1] eA=[1+2e2X−12e2X−12e2X−11+2e2X−1]=[22+e2X−12e2X−12e2X−122+e2X−1]=[2e2X+12e2X−12e2X−12e2X+1].
We are given that eA=21[f(x)g(x)g(x)f(x)]. Comparing the elements, assuming the variable is x instead of X: 21f(x)=2e2x+1⟹f(x)=e2x+1. 21g(x)=2e2x−1⟹g(x)=e2x−1.
We need to evaluate the integral ∫f(x)g(x)dx. ∫e2x+1e2x−1dx. We can rewrite the integrand by dividing the numerator and denominator by ex: e2x+1e2x−1=ex+e−xex−e−x. Let u=ex+e−x. Then du=(ex−e−x)dx. The integral becomes ∫udu=log∣u∣+C=log∣ex+e−x∣+C. Since ex+e−x>0 for all real x, we have log(ex+e−x)+C.
We need to express this in the form log(eαx+1)+βx+C. log(ex+e−x)=log(e−x(e2x+1))=log(e−x)+log(e2x+1)=−x+log(e2x+1). So, ∫f(x)g(x)dx=log(e2x+1)−x+C.
Comparing this with the given form log(eαx+1)+βx+C, we identify the coefficients: α=2 β=−1
We are asked to find the value of (12α+β). 12α+β=12(2)+(−1)=24−1=23.
The final answer is 23.