Solveeit Logo

Question

Question: If A is a square matrix and $e^A$ is defined as $e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + ......

If A is a square matrix and eAe^A is defined as eA=I+A+A22!+A33!+....e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + .... upto infinity = 12[f(x)g(x)g(x)f(x)]\frac{1}{2} \begin{bmatrix} f(x) & g(x) \\ g(x) & f(x) \end{bmatrix}, where A = [XXXX]\begin{bmatrix} X & X \\ X & X \end{bmatrix}, and I being the identity matrix of same order as A then :

If g(x)f(x)dx=log(eαx+1)+βx+C\int \frac{g(x)}{f(x)} dx = log(e^{\alpha x} + 1) + \beta x + C then value of (12α+β)(12\alpha + \beta) is : (where C is constant of integration)

Answer

23

Explanation

Solution

Let the given matrix be A=[XXXX]A = \begin{bmatrix} X & X \\ X & X \end{bmatrix}. We need to compute eAe^A.

The definition of eAe^A is given by the matrix exponential series: eA=I+A+A22!+A33!+....e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + ....

Let's calculate the powers of AA. A2=AA=[XXXX][XXXX]=[X2+X2X2+X2X2+X2X2+X2]=[2X22X22X22X2]=2X2[1111]A^2 = A \cdot A = \begin{bmatrix} X & X \\ X & X \end{bmatrix} \begin{bmatrix} X & X \\ X & X \end{bmatrix} = \begin{bmatrix} X^2 + X^2 & X^2 + X^2 \\ X^2 + X^2 & X^2 + X^2 \end{bmatrix} = \begin{bmatrix} 2X^2 & 2X^2 \\ 2X^2 & 2X^2 \end{bmatrix} = 2X^2 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}. Let A0=[1111]A_0 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}. Then A=XA0A = X A_0. A2=2X2A0A^2 = 2X^2 A_0. A3=A2A=(2X2A0)(XA0)=2X3A02A^3 = A^2 A = (2X^2 A_0)(X A_0) = 2X^3 A_0^2. Let's compute A02A_0^2: A02=[1111][1111]=[2222]=2[1111]=2A0A_0^2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = 2 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 2A_0. So, A3=2X3(2A0)=4X3A0=22X3A0A^3 = 2X^3 (2A_0) = 4X^3 A_0 = 2^2 X^3 A_0. A4=A3A=(22X3A0)(XA0)=22X4A02=22X4(2A0)=23X4A0A^4 = A^3 A = (2^2 X^3 A_0)(X A_0) = 2^2 X^4 A_0^2 = 2^2 X^4 (2A_0) = 2^3 X^4 A_0. In general, for n1n \ge 1, An=2n1XnA0=2n1Xn[1111]A^n = 2^{n-1} X^n A_0 = 2^{n-1} X^n \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.

Now substitute this into the series for eAe^A: eA=I+n=1Ann!=[1001]+n=12n1Xnn![1111]e^A = I + \sum_{n=1}^{\infty} \frac{A^n}{n!} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \sum_{n=1}^{\infty} \frac{2^{n-1} X^n}{n!} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} eA=[1001]+12n=12nXnn![1111]=[1001]+12(n=1(2X)nn!)[1111]e^A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{2^n X^n}{n!} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{1}{2} \left( \sum_{n=1}^{\infty} \frac{(2X)^n}{n!} \right) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}. The series n=1znn!=ez1\sum_{n=1}^{\infty} \frac{z^n}{n!} = e^z - 1. Let z=2Xz = 2X. So, n=1(2X)nn!=e2X1\sum_{n=1}^{\infty} \frac{(2X)^n}{n!} = e^{2X} - 1. eA=[1001]+12(e2X1)[1111]=[1001]+[e2X12e2X12e2X12e2X12]e^A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{1}{2} (e^{2X} - 1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} \frac{e^{2X} - 1}{2} & \frac{e^{2X} - 1}{2} \\ \frac{e^{2X} - 1}{2} & \frac{e^{2X} - 1}{2} \end{bmatrix} eA=[1+e2X12e2X12e2X121+e2X12]=[2+e2X12e2X12e2X122+e2X12]=[e2X+12e2X12e2X12e2X+12]e^A = \begin{bmatrix} 1 + \frac{e^{2X} - 1}{2} & \frac{e^{2X} - 1}{2} \\ \frac{e^{2X} - 1}{2} & 1 + \frac{e^{2X} - 1}{2} \end{bmatrix} = \begin{bmatrix} \frac{2 + e^{2X} - 1}{2} & \frac{e^{2X} - 1}{2} \\ \frac{e^{2X} - 1}{2} & \frac{2 + e^{2X} - 1}{2} \end{bmatrix} = \begin{bmatrix} \frac{e^{2X} + 1}{2} & \frac{e^{2X} - 1}{2} \\ \frac{e^{2X} - 1}{2} & \frac{e^{2X} + 1}{2} \end{bmatrix}.

We are given that eA=12[f(x)g(x)g(x)f(x)]e^A = \frac{1}{2} \begin{bmatrix} f(x) & g(x) \\ g(x) & f(x) \end{bmatrix}. Comparing the elements, assuming the variable is xx instead of XX: 12f(x)=e2x+12    f(x)=e2x+1\frac{1}{2} f(x) = \frac{e^{2x} + 1}{2} \implies f(x) = e^{2x} + 1. 12g(x)=e2x12    g(x)=e2x1\frac{1}{2} g(x) = \frac{e^{2x} - 1}{2} \implies g(x) = e^{2x} - 1.

We need to evaluate the integral g(x)f(x)dx\int \frac{g(x)}{f(x)} dx. e2x1e2x+1dx\int \frac{e^{2x} - 1}{e^{2x} + 1} dx. We can rewrite the integrand by dividing the numerator and denominator by exe^x: e2x1e2x+1=exexex+ex\frac{e^{2x} - 1}{e^{2x} + 1} = \frac{e^x - e^{-x}}{e^x + e^{-x}}. Let u=ex+exu = e^x + e^{-x}. Then du=(exex)dxdu = (e^x - e^{-x}) dx. The integral becomes duu=logu+C=logex+ex+C\int \frac{du}{u} = \log|u| + C = \log|e^x + e^{-x}| + C. Since ex+ex>0e^x + e^{-x} > 0 for all real xx, we have log(ex+ex)+C\log(e^x + e^{-x}) + C.

We need to express this in the form log(eαx+1)+βx+Clog(e^{\alpha x} + 1) + \beta x + C. log(ex+ex)=log(ex(e2x+1))=log(ex)+log(e2x+1)=x+log(e2x+1)\log(e^x + e^{-x}) = \log(e^{-x}(e^{2x} + 1)) = \log(e^{-x}) + \log(e^{2x} + 1) = -x + \log(e^{2x} + 1). So, g(x)f(x)dx=log(e2x+1)x+C\int \frac{g(x)}{f(x)} dx = \log(e^{2x} + 1) - x + C.

Comparing this with the given form log(eαx+1)+βx+Clog(e^{\alpha x} + 1) + \beta x + C, we identify the coefficients: α=2\alpha = 2 β=1\beta = -1

We are asked to find the value of (12α+β)(12\alpha + \beta). 12α+β=12(2)+(1)=241=2312\alpha + \beta = 12(2) + (-1) = 24 - 1 = 23.

The final answer is 23\boxed{23}.