Solveeit Logo

Question

Question: If 'a' is a real constant and A, B, C are variable anglesand <img src="https://cdn.pureessence.tech...

If 'a' is a real constant and A, B, C are variable anglesand

tan A + a tan B + a2+4\sqrt { \mathrm { a } ^ { 2 } + 4 } tan C = 6a then the least

value of tan2 A + tan2 B + tan2C is –

A

6

B

10

C

12

D

3

Answer

12

Explanation

Solution

Given relation can be written as the vector expression

(a24i^+aj^+a2+4k^)\left( \sqrt { a ^ { 2 } - 4 } \hat { i } + a \hat { j } + \sqrt { a ^ { 2 } + 4 } \hat { k } \right). (tanAi^+tanBj^+tanCk^)( \tan \mathrm { A } \hat { \mathrm { i } } + \tan \mathrm { B } \hat { \mathrm { j } } + \tan \mathrm { C } \hat { \mathrm { k } } )

a24+a2+a2+4\sqrt { a ^ { 2 } - 4 + a ^ { 2 } + a ^ { 2 } + 4 } tan2 A+tan2 B+tan2C\sqrt { \tan ^ { 2 } \mathrm {~A} + \tan ^ { 2 } \mathrm {~B} + \tan ^ { 2 } \mathrm { C } }

(cos q) = 6a

tan2 A + tan2 B + tan2 C = 12 sec2 q ³ 12

least value of tan2 A + tan2 B + tan2 C is 12.