Question
Question: If ‘a’ is a real constant and A,B,C are the variable angles and \[\sqrt{{{a}^{2}}-4}\tan A+a\tan B+\...
If ‘a’ is a real constant and A,B,C are the variable angles and a2−4tanA+atanB+a2+4tanC=6a , then the least value of tan2A+tan2B+tan2C is
& (A)6 \\\ & (B)10 \\\ & (C)12 \\\ & (D)3 \\\ \end{aligned}$$Solution
Hint : We should know that that if a1,a2,a3,b1,b2,b3 are numbers, integers, functions etc….. then (a1b1+a2b2+a3b3)2≥(a12+a22+a32)(b12+b22+b32). Now we should compare a2−4tanA+atanB+a2+4tanC with a1b1+a2b2+a3b3. Now we can get the values of a1,a2,a3,b1,b2,b3.
Now by using the statement (a1b1+a2b2+a3b3)2≥(a12+a22+a32)(b12+b22+b32), we can find the values of tan2A+tan2B+tan2C.
Complete step by step solution :
Before solving the problem, we should know that if a1,a2,a3,b1,b2,b3 are numbers, integers, functions etc….. then (a1b1+a2b2+a3b3)2≥(a12+a22+a32)(b12+b22+b32).
From the question, we given that a2−4tanA+atanB+a2+4tanC=6a
Let us compare a2−4tanA+atanB+a2+4tanC with a1b1+a2b2+a3b3, then we get