Solveeit Logo

Question

Question: If a is a positive integer, then the number of values of a satisfying\(\int _ { 0 } ^ { \pi / 2 } \l...

If a is a positive integer, then the number of values of a satisfying0π/2{a(cos3x4+34cosx)+asinx20cosx}\int _ { 0 } ^ { \pi / 2 } \left\{ a \left( \frac { \cos 3 x } { 4 } + \frac { 3 } { 4 } \cos x \right) + a \sin x - 20 \cos x \right\}dx£ a23\frac { \mathrm { a } ^ { 2 } } { 3 } are -

A

One

B

Two

C

Three

D

Four

Answer

Four

Explanation

Solution

The L.H.S. of the above inequality is equal to

a2 – a cos x – 20 sinx0π/2\left. \sin x \right| _ { 0 } ^ { \pi / 2 }

= a2 (112+34)\left( - \frac { 1 } { 12 } + \frac { 3 } { 4 } \right) – a (0 – 1) – 20 = + a – 20.

Thus the given inequality is (2a2/3) + a – 20 £ – a2/3

i.e. a2 + a – 20 £ 0 Ū – 5 £ a £ 4

Since a is a positive integer so a = 1, 2, 3, 4.