Solveeit Logo

Question

Mathematics Question on integral

If a is a positive integer, then the number of values of a satisfying 0π/2{a2(cos3x4+34cosx)+asinx20cosx}dxa23\displaystyle\int_0^{\pi/2}\begin{Bmatrix}a^2\left(\frac{\cos 3x}{4}+\frac{3}{4}\cos\,x\right)+a\,\sin\,x-20\,\cos\,x\end{Bmatrix}dx\leq-\frac{a^2}{3} is

A

one

B

two

C

three

D

four.

Answer

four.

Explanation

Solution

L.H.S. =a24sin3x3+3a24sinxacosx20sinx0π/2=\left|\frac{a^{2}}{4}\cdot\frac{sin\,3x}{3}+\frac{3a^{2}}{4} sin\,x-a\, cos\,x-20 sin\,x\right|_{0}^{\pi /2} =a212+3a2420+a=2a23+a20=-\frac{a^{2}}{12}+\frac{3 a^{2}}{4}-20+a=\frac{2a^{2}}{3}+a-20 \therefore by the given condition 2a23+a20a23\frac{2a^{2}}{3}+a-20 \le\, -\frac{a^{2}}{3} 2a2+3a60a23a2+3a600\Rightarrow 2a^{2}+3a-60 \le-a^{2} \Rightarrow 3a^{2}+3a-60 \le0 a2+a200\Rightarrow a^{2}+a-20 \le\,0 (a+5)(a4)0\Rightarrow \left(a+5\right)\left(a-4\right)\le0 5a4\Rightarrow -5 \le\, a \le\, 4 Since a is a +ve+ve integer. a=1,2,3,4\therefore a=1, 2, 3,4 \therefore number of values of a=4a = 4.