Solveeit Logo

Question

Question: If a is a complex nth root of unity and if Z<sub>1</sub> and Z<sub>2</sub> are two complex numbers, ...

If a is a complex nth root of unity and if Z1 and Z2 are two complex numbers, then r=0n1Z1+αrZ22\sum_{r = 0}^{n - 1}{|Z_{1} + \alpha^{r}Z_{2}|^{2}}=

A

n2 |Z1 + Z2|2

B

(Z1n+Z2n)2\left( \frac{Z_{1}}{n} + \frac{Z_{2}}{n} \right)^{2}

C

n (|Z1|2 + |Z2|2)

D

n2 (|Z1|2 + |Z2|2)

Answer

n (|Z1|2 + |Z2|2)

Explanation

Solution

Sol. We have 1 + a + a2 + …….. + an–1 = 0. It is clear that r0n1αr\sum_{r - 0}^{n - 1}\alpha^{r} = 0

Nowr=0n1Z1+αrZ22\sum_{r = 0}^{n - 1}{|Z_{1} + \alpha^{r}Z_{2}|^{2}}=r=0n1(Z1+αrZ2)(Zˉ1+αˉrZˉ2)\sum_{r = 0}^{n - 1}{(Z_{1} + \alpha^{r}Z_{2})({\bar{Z}}_{1} + {\bar{\alpha}}^{r}{\bar{Z}}_{2})}

= r=0n1Z12+Z1Zˉ2\sum_{r = 0}^{n - 1}{|Z_{1}|^{2} + Z_{1}{\bar{Z}}_{2}}

r=0n1αr\sum_{r = 0}^{n - 1}\alpha^{r}+ r=0n1Z22α2r\sum_{r = 0}^{n - 1}{|Z_{2}|^{2}|\alpha|^{2r}}

= n(|Z1|2 + |Z2|2), using (1) and |a| = 1.