Solveeit Logo

Question

Mathematics Question on Determinants

If AA is a 3×33 \times 3 nonsingular matrix and if A=3|A | = 3, then (2A)1|(2A)^{-1}|= _______

A

13\frac {1}{3}

B

124\frac {1}{24}

C

2424

D

33

Answer

124\frac {1}{24}

Explanation

Solution

Given, A3×30|A|_{3 \times 3} \neq 0 and A=3|A|=3
Then, (2A)1=12A=12A\left|(2 A)^{-1}\right|=\left|\frac{1}{2 A}\right|=\frac{1}{|2 A|}
=1(2)31A(aA=a3A)=\frac{1}{(2)^{3}} \cdot \frac{1}{|A|} \left(\because|a A|=a^{3}|A|\right)
=1813=124=\frac{1}{8} \cdot \frac{1}{3}=\frac{1}{24}