Solveeit Logo

Question

Question: If \[A\] is a \[3 \times 3\] matrix and \[{\text{det}}\left( {3A} \right) = k\left\\{ {\det \left( A...

If AA is a 3×33 \times 3 matrix and {\text{det}}\left( {3A} \right) = k\left\\{ {\det \left( A \right)} \right\\}, then the value of k=k =
A. Nine
B. Six
C. One
D. Twenty-seven

Explanation

Solution

In this question, we will use one of the properties of the determinants i.e., det(qA)=qndet(A)\det \left( {qA} \right) = {q^n}\det \left( A \right) where nn is the order of the square matrix. So, use this concept to reach the solution of the given problem.

Complete step-by-step answer :
Given AA is a matrix of order 3×33 \times 3. So, it is a square matrix.
We know that det(qA)=qndet(A)\det \left( {qA} \right) = {q^n}\det \left( A \right), where nn is the order of the matrix AA.
So, here the order of the matrix AA is 3 i.e., n=3n = 3.
Now, consider the value of det(3A)\det \left( {3A} \right) by using the formula

\Rightarrow \det \left( {3A} \right) = {3^n}\left\\{ {\det \left( A \right)} \right\\} \\\ \Rightarrow \det \left( {3A} \right) = {3^3}\left\\{ {\det \left( A \right)} \right\\}{\text{ }}\left[ {\because n = 3} \right] \\\ \therefore \det \left( {3A} \right) = 27\left\\{ {\det \left( A \right)} \right\\} \\\

But given that {\text{det}}\left( {3A} \right) = k\left\\{ {\det \left( A \right)} \right\\}
By comparing the above two values, we have k=27k = 27.
Thus, the correct option is D. Twenty-seven

Note : To check whether the formula we used correct or not, let us consider an example with A = {\left[ {\begin{array}{*{20}{c}} 1&2 \\\ 3&4 \end{array}} \right]_{2 \times 2}}and consider the value of det(2A)\det \left( {2A} \right).
First let us find 2A = 2 \times \left[ {\begin{array}{*{20}{c}} 1&2 \\\ 3&4 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&4 \\\ 6&8 \end{array}} \right]
Now \det \left( {2A} \right) = \left| {\begin{array}{*{20}{c}} 2&4 \\\ 6&8 \end{array}} \right| = \left\\{ {\left( 2 \right)\left( 8 \right) - \left( 4 \right)\left( 6 \right)} \right\\} = \left( {16 - 24} \right) = - 8
And \det \left( A \right) = \left| {\begin{array}{*{20}{c}} 1&2 \\\ 3&4 \end{array}} \right| = \left\\{ {\left( 1 \right)\left( 4 \right) - \left( 2 \right)\left( 3 \right)} \right\\} = 4 - 6 = - 2
We have used the formula det(qA)=qndet(A)\det \left( {qA} \right) = {q^n}\det \left( A \right). Let us check for this by substituting the value of n=2n = 2 and q=2q = 2.

det(2A)=22det(A) det(2A)=4(2) det(2A)=8  \Rightarrow \det \left( {2A} \right) = {2^2}\det \left( A \right) \\\ \Rightarrow \det \left( {2A} \right) = 4\left( { - 2} \right) \\\ \therefore \det \left( {2A} \right) = - 8 \\\

Since, both the values are equal, the formula we have used is correct.