Solveeit Logo

Question

Question: If A is \(3\times 4\) matrix and B is a matrix such that A’B and B’A are both defined, then order of...

If A is 3×43\times 4 matrix and B is a matrix such that A’B and B’A are both defined, then order of B is
A. 4×44\times 4
B. 3×33\times 3
C. 3×43\times 4
D. 4×34\times 3

Explanation

Solution

Hint: Let there be matrix XX and YY.
X=[xij]m×n, 1im, 1jn Y=[yij]p×q, 1ip, 1jq \begin{aligned} & X={{\left[ {{x}_{ij}} \right]}_{m\times n}},\text{ 1}\le \text{i}\le m,\text{ 1}\le \text{j}\le n \\\ & Y={{\left[ {{y}_{ij}} \right]}_{p\times q}},\text{ 1}\le \text{i}\le \text{p, 1}\le \text{j}\le \text{q} \\\ \end{aligned}

Complete step-by-step answer:
Here, mm is the number of rows and nn is the number of columns in matrix XX respectively . Similarly, pp is the number of rows and qq is the number of columns in the matrix YY. So, two matrices XX and YY can be multiplied as XYXY if the number of columns of XX is equal to the number of rows of YY. That is n=pn=p.
Mathematically,
Number of columns ofXX == Number of rows of YY
that is n=pn=p
So, XY=(x11x1n  xm1xmn )×(y11y1q  yn1ynq )XY=\left( \begin{matrix} {{x}_{11}} & \ldots & {{x}_{1n}} \\\ \vdots & \ddots & \vdots \\\ {{x}_{m1}} & \cdots & {{x}_{mn}} \\\ \end{matrix} \right)\times \left( \begin{matrix} {{y}_{11}} & \ldots & {{y}_{1q}} \\\ \vdots & \ddots & \vdots \\\ {{y}_{n1}} & \cdots & {{y}_{nq}} \\\ \end{matrix} \right)
So, here, n=pn=p
XX' of a matrix is the transpose of matrixXX
So, if X=(x11x1n  xm1xmn )X=\left( \begin{matrix} {{x}_{11}} & \ldots & {{x}_{1n}} \\\ \vdots & \ddots & \vdots \\\ {{x}_{m1}} & \cdots & {{x}_{mn}} \\\ \end{matrix} \right)
Then, X=XT=X=(x11x1n  xm1xmn )Tm×n=(x11xm1  x1nxnm )n×mX'={{X}^{T}}=X={{\left( \begin{matrix} {{x}_{11}} & \ldots & {{x}_{1n}} \\\ \vdots & \ddots & \vdots \\\ {{x}_{m1}} & \cdots & {{x}_{mn}} \\\ \end{matrix} \right)}^{T}}_{m\times n}={{\left( \begin{matrix} {{x}_{11}} & \ldots & {{x}_{m1}} \\\ \vdots & \ddots & \vdots \\\ {{x}_{1n}} & \cdots & {{x}_{nm}} \\\ \end{matrix} \right)}_{n\times m}}

So, clearly we can see the order reverses after the transpose of a matrix.
So, for A=[aij]3×4, 1i3, 1j4A={{\left[ {{a}_{ij}} \right]}_{3\times 4}},\text{ 1}\le \text{i}\le \text{3,}\ \text{1}\le \text{j}\le \text{4}
A=[aji]4×3, 1j4, 1i3A'={{\left[ {{a}_{ji}} \right]}_{4\times 3}},\text{ 1}\le \text{j}\le \text{4,}\ \text{1}\le \text{i}\le \text{3}
So, order ofAA'is4×34\times 3 and forB=[bij]m×n,  1im, 1jnB={{\left[ {{b}_{ij}} \right]}_{m\times n}},\ \ \text{1}\le \text{i}\le \text{m, 1}\le \text{j}\le \text{n}
B=[bji]n×m, 1jn, 1imB'={{\left[ {{b}_{ji}} \right]}_{n\times m}},\ \text{1}\le \text{j}\le \text{n, 1}\le \text{i}\le \text{m}
Now, for ABA'B, number of columns of AA' == number of rows ofBB 3=m\Rightarrow 3=m
Also, for BAB'A to be defined number of columns of B=B'=number of rows ofAA m=3\Rightarrow m=3
For both cases to be defined, mm equal number of rows of BB should be 33 and nn can be any number. So, it can be 33 and 44 both. So, following that the order of BB could be 3×33\times 3 or 3×43\times 4 respectively.
So, the correct option is option B and option C.

Note: AA' is the transpose of matrix AA. One may not consider it inverse of AA unless specified so. Also, if ABA'B exists then BAB'A also exists automatically because,
(AB)=B(A)=BA(A'B)'=B'\left( A' \right)'=B'A ( General property of matrices)
So, in simple terms if matrix AA exists then its transpose also exists.