Solveeit Logo

Question

Question: If \(A\) is \(2 \times 3\) matrix and \(AB\) is a \(2 \times 5\) matrix, then \(B\) must be a (A)...

If AA is 2×32 \times 3 matrix and ABAB is a 2×52 \times 5 matrix, then BB must be a
(A) 3×53 \times 5matrix
(B) 5×35 \times 3matrix
(C) 3×23 \times 2matrix
(D) 5×25 \times 2matrix

Explanation

Solution

The matrix multiplication should be possible only if AA =m×n'm \times n' matrix, then BB should be n×b'n \times b'matrix and thus ABAB becomes m×b'm \times b'matrix.

Complete step-by-step answer:
AA=2×32 \times 3matrix
& ABAB=2×52 \times 5matrix
We know that if AA =m×n'm \times n' matrix, then BB should be n×b'n \times b'matrix, so that the matrix multiplication is possible and AB=m×bAB = 'm \times b'matrix.
In other words, Multiplication of matrices follows-
[A]m×n[B]n×b=[AB]m×b{\left[ A \right]_{m \times n}}{\left[ B \right]_{n \times b}} = {\left[ {AB} \right]_{m \times b}}
Given m=2m = 2, n=3n = 3, b=5b = 5
So, BB must be a 3×53 \times 5 matrix.
Hence, option (A) is the correct answer.

Note: Some facts related to the multiplication of matrices are given below:
AB is possible, only if-
Number of columns in matrix A = Number of rows in matrix B
Multiplication of matrices follows-
[A]m×n[B]n×b=[AB]m×b{\left[ A \right]_{m \times n}}{\left[ B \right]_{n \times b}} = {\left[ {AB} \right]_{m \times b}}