Question
Question: If A = \(\int_{1}^{\sin\theta}\frac{tdt}{1 + t^{2}}\) and B = \(\int_{1}^{\cos ec\theta}\frac{dt}{t(...
If A = ∫1sinθ1+t2tdt and B = ∫1cosecθt(1+t2)dt then the value of AeAeB1A2B2A2+B2B−1−1 is
A
sinq
B
cosecq
C
0
D
1
Answer
0
Explanation
Solution
A = ∫1sinθ1+t2tdt
B = ∫1cosecθt(1+t2)dt Put t = z1, dt = – z21 dz
B = ∫1sinθz1(1+z21)−z21dz
B = ∫1sinθ(z2+1)−zdz
B = – ∫1sinθ(z2+1)zdz z Ž t
B = – ∫1sinθt2+1tdt = – A
B = – A A + B = 0
Now D = A11A2A22A2−A−1−1 = 0