Solveeit Logo

Question

Question: If α = \(\int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}...

If α = 01(e(9x+3tan1x))(12+9x21+x2)dx,\int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx, where tan1x{{\tan }^{-1}}x takes only principal values, then the value of (loge1+a3π4)\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right) is

Explanation

Solution

Now we have been given with α = 01(e(9x+3tan1x))(12+9x21+x2)dx,\int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx, to solve this integral we will substitute 9x+3tan1x9x+3{{\tan }^{-1}}x as t and solve it by substituting method. Once we find the value of α we will substitute the value of α in (loge1+a3π4)\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right) and find the solution.

Complete step by step answer:
Now consider the integral α = 01(e(9x+3tan1x))(12+9x21+x2)dx,\int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx,
Now here we can see that d(tan1x)=11+x2d({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}} hence somehow substitution can be used to simplify the problem.
Now let us take 9x+3tan1x=t9x+3{{\tan }^{-1}}x=t Differentiating on both side with respect to x we get
9+311+x2=dtdx9+3\dfrac{1}{1+{{x}^{2}}}=\dfrac{dt}{dx}
Solving left hand side we get
9+9x2+31+x2=dtdx\dfrac{9+9{{x}^{2}}+3}{1+{{x}^{2}}}=\dfrac{dt}{dx}
Hence we have
12+9x21+x2=dtdx\dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}}=\dfrac{dt}{dx}
Taking dx on left hand side we get
(12+9x21+x2)dx=dt\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx=dt
Similarly let us check the change in limit of integral
As limx09(0)+tan10=0\displaystyle \lim_{x \to 0}9(0)+{{\tan }^{-1}}0=0
Similarly as limx19(1)+3tan11=9+3π4\displaystyle \lim_{x \to 1}9(1)+3{{\tan }^{-1}}1=9+\dfrac{3\pi }{4}
Now using this substitution we get in the given integration we get.
01(e(9x+3tan1x))(12+9x21+x2)dx=09+3π4etdt =[et]09+3π4 =e9+3π4e0 =e9+3π41 \begin{aligned} & \int\limits_{0}^{1}{({{e}^{(9x+3{{\tan }^{-1}}x)}})}\left( \dfrac{12+9{{x}^{2}}}{1+{{x}^{2}}} \right)dx=\int\limits_{0}^{9+\dfrac{3\pi }{4}}{{{e}^{t}}dt} \\\ & =[{{e}^{t}}]_{0}^{^{9+\dfrac{3\pi }{4}}} \\\ & ={{e}^{9+\dfrac{3\pi }{4}}}-{{e}^{0}} \\\ & ={{e}^{9+\dfrac{3\pi }{4}}}-1 \\\ \end{aligned}
Hence the value of α is equal to e9+3π41{{e}^{9+\dfrac{3\pi }{4}}}-1
Now since α = e9+3π41{{e}^{9+\dfrac{3\pi }{4}}}-1 adding 1 on both sides we get
α + 1 = e9+3π41+1{{e}^{9+\dfrac{3\pi }{4}}}-1+1
Hence we get the value of α + 1 = e9+3π4{{e}^{9+\dfrac{3\pi }{4}}}
Now taking log on both sides we get.
logea+1=logee9+3π4{{\log }_{e}}|a+1|={{\log }_{e}}{{e}^{9+\dfrac{3\pi }{4}}}
But we know logeea=a{{\log }_{e}}{{e}^{a}}=a using this we get
logea+1=9+3π4{{\log }_{e}}|a+1|=9+\dfrac{3\pi }{4}
Now let us subtract 3π4\dfrac{3\pi }{4} on both sides.
(loge1+a3π4)=9+3π43π4=9\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right)=9+\dfrac{3\pi }{4}-\dfrac{3\pi }{4}=9

Hence we get the value of (loge1+a3π4)\left( {{\log }_{e}}|1+a|-\dfrac{3\pi }{4} \right) = 9.

Note: Here when we use a method of substitution to integrate note that the limits of integration also change. Hence if we substitute a function f(x) as t we should change the limits of x to t by substituting the value of x in substitution. Also since we are given tan1x{{\tan }^{-1}}x takes only principal values we could write tan11=π4,tan10=0{{\tan }^{-1}}1=\dfrac{\pi }{4},{{\tan }^{-1}}0=0