Solveeit Logo

Question

Question: If \[a \in R\] and the equation \( - 3{(x - \left[ x \right])^2} + 2(x - \left[ x \right]) + {a^2} =...

If aRa \in R and the equation 3(x[x])2+2(x[x])+a2=0- 3{(x - \left[ x \right])^2} + 2(x - \left[ x \right]) + {a^2} = 0 (where [x]\left[ x \right] denotes the greatest integer x\leqslant x ) has no integral solution but has real solution, then all possible values of a lie in the interval:
A. (1,0)(0,1)( - 1,0) \cup (0,1)
B. (1,2)(1,2)
C. (2,1)( - 2, - 1)
D. (,2)(2,)( - \infty , - 2) \cup (2,\infty )

Explanation

Solution

To solve this first we will convert the above equation into a simple quadratic equation, and will get its root by using quadratic formula. Putting the root in interval of 0 and 1 as it is a fractional part we will get the interval of possible values of a.

Complete step-by-step answer:
The Greatest Integer Function is denoted by y=[x]y = [x]. For all real numbers, x, the greatest integer function returns the largest integer. less than or equal to x. In essence, it rounds down a real number to the nearest integer.
Let x - \left[ x \right] = t = \left\\{ X \right\\} , which is a fractional part function.
It lies between 0 and1, 0 \leqslant \left\\{ X \right\\} < 1
According to question,aRa \in R and the given equation is,
3(x[x])2+2(x[x])+a2=0- 3{(x - \left[ x \right])^2} + 2(x - \left[ x \right]) + {a^2} = 0
Putting x[x]=tx - \left[ x \right] = t in the above equation we get,
3t2+2t+a2=0- 3{t^2} + 2t + {a^2} = 0
Comparing the above equation with a2x+bx+c=0a^2x+bx+c=0 we get a=3a=-3 , b=2b=2 and c=a2c=a^2.
Putting the values in quadratic formula t=b±b24ac2at = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} in the above equation,
t=2±(2)24(3)a22(3)t = \dfrac{{ - 2 \pm \sqrt {{{( - 2)}^2} - 4( - 3){a^2}} }}{{2( - 3)}}
Expanding it we get,
t=2±4+12a26t = \dfrac{{ - 2 \pm \sqrt {4 + 12{a^2}} }}{{ - 6}}
Taking 4\sqrt 4 common from the square root term of the right hand side we get two type of solution of +2 and -2, i.e.
t=2±(2)1+3a26t = \dfrac{{ - 2 \pm ( - 2)\sqrt {1 + 3{a^2}} }}{{ - 6}} and t=2±21+3a26t = \dfrac{{ - 2 \pm 2\sqrt {1 + 3{a^2}} }}{{ - 6}}
Taking -2 common from the numerator of right hand side in both the cases we get, t=(2)1±1+3a26t = ( - 2)\dfrac{{1 \pm \sqrt {1 + 3{a^2}} }}{{ - 6}} and t=(2)11+3a26t = ( - 2)\dfrac{{1 \mp \sqrt {1 + 3{a^2}} }}{{ - 6}}
Cancelling -2 with -6 of denominator we get,
t=1±1+3a23t = \dfrac{{1 \pm \sqrt {1 + 3{a^2}} }}{3} and t=11+3a23t = \dfrac{{1 \mp \sqrt {1 + 3{a^2}} }}{3}
\because x - \left[ x \right] = t = \left\\{ X \right\\} (Fractional part)
\therefore 0t10 \leqslant t \leqslant 1
Hence, 01±1+3a2310 \leqslant \dfrac{{1 \pm \sqrt {1 + 3{a^2}} }}{3} \leqslant 1 and 011+3a2310 \leqslant \dfrac{{1 \mp \sqrt {1 + 3{a^2}} }}{3} \leqslant 1
Taking only positive sign as x > 0 we get,
01+1+3a2310 \leqslant \dfrac{{1 + \sqrt {1 + 3{a^2}} }}{3} \leqslant 1
Multiplying 3 with each we get,
0×31+1+3a23×3<1×30 \times 3 \leqslant \dfrac{{1 + \sqrt {1 + 3{a^2}} }}{3} \times 3 < 1 \times 3
I.e. 01+1+3a230 \leqslant 1 + \sqrt {1 + 3{a^2}} \leqslant 3
Taking right side part only,
1+1+3a231 + \sqrt {1 + 3{a^2}} \leqslant 3
Subtracting 1 from each we get,
1+3a2<2\sqrt {1 + 3{a^2}} < 2
Taking square on both side we get,
1+3a2<41 + 3{a^2} < 4
Subtracting 1 from both of the side we get,
3a2<33{a^2} < 3
Cancelling 3 from both of the side,
a2<1{a^2} < 1
Taking 1 to the left hand side,
a21<0{a^2} - 1 < 0
Expanding the above equation we get,
(a1)(a+1)<0(a - 1)(a + 1) < 0
\therefore a(1,1)a \in ( - 1,1) , for no integer solution of a, we consider the interval (1,0)(0,1)( - 1,0) \cup (0,1) .
Hence all possible values of a lie in the interval (1,0)(0,1)( - 1,0) \cup (0,1) .

So, the correct answer is “Option A”.

Note: A quadratic equation is an equation of the second degree i.e. it contains at least one term which is square.The quadratic formula is given by,
x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}.In above question we took only positive sign because x is greater than 0.