Question
Mathematics Question on Complex Numbers and Quadratic Equations
Ifa+ib=2x2+1(x+1)2,provethata2+b2=(2x2+1)(x2+1)2
Answer
Ifa+ib=2x2+1(x+1)2
=2x2+1x2+i2+2xi
=2x2+1x2−1+i2x
=2x2+1x2−1+1(2x2+12x)
on comparing real and imaginary parts, we obtain
a=2x2+1x2−1andb=2x2+12x
a2+b2=(2x2+1x2−1)+(2x2+12x)2
=(2x+1)2x4+1−2x2+4x2
(2x2+1)2x2+1+2x2
=(2x2+1)2(x2+1)2
=a2+b2=(2x+1)2(x2+1)2
Hence, proved.