Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If(a+ib)(c+id)(e+if)(g+ih)=A+iB,then show that(a2+b2)(c2+d2)(e2+f2)(g2+h2)=A2+B2.If (a+ib) (c+id) (e+if)(g+ih)=A+iB, \text {then show that} (a^2+b^2 )(c^2+d^2) (e^2+f^2)(g^2+h^2)=A^2+B^2.

Answer

(a+ib)(c+id)(e+if)(g+ih)=A+iB(a+ib)(c+id)(e+if)(g+ih)=A+iB

(a+ib)(c+id)(e+if)(g+ih)=A+iB∴|(a+ib)(c+id)(e+if)(g+ih)|=|A+iB|

(a+ib)×(c+id)×(e+if)×(g+ih)=A+iB⇒|(a+ib)|×|(c+id)|×|(e+if)|×|(g+ih)|=|A+iB| [z1z2=z1z2][|z_1z_2|=|z_1||z_2|]

a2+b2×c2+d2×e2+f2×g2+h2=A2+B2⇒ \sqrt a^2+b^2×\sqrt c^2+d^2×\sqrt e^2+f^2×\sqrt g^2+h^2=\sqrt A^2+B^2

On squaring both sides, we obtain\text{On squaring both sides, we obtain}

(a2\+b2)(c2\+d2)(e2\+f2)(g2\+h2)=A2+B2(a^ 2 \+ b^ 2 ) (c^ 2 \+ d ^2 ) (e ^2 \+ f ^2 ) (g^ 2 \+ h^ 2 ) = A^2 + B ^2

Hence, proved.\text{Hence, proved.}