Question
Mathematics Question on Complex Numbers and Quadratic Equations
If(a+ib)(c+id)(e+if)(g+ih)=A+iB,then show that(a2+b2)(c2+d2)(e2+f2)(g2+h2)=A2+B2.
Answer
(a+ib)(c+id)(e+if)(g+ih)=A+iB
∴∣(a+ib)(c+id)(e+if)(g+ih)∣=∣A+iB∣
⇒∣(a+ib)∣×∣(c+id)∣×∣(e+if)∣×∣(g+ih)∣=∣A+iB∣ [∣z1z2∣=∣z1∣∣z2∣]
⇒a2+b2×c2+d2×e2+f2×g2+h2=A2+B2
On squaring both sides, we obtain
(a2\+b2)(c2\+d2)(e2\+f2)(g2\+h2)=A2+B2
Hence, proved.