Solveeit Logo

Question

Question: If \(a+ib+c{{i}^{2}}+d{{i}^{3}}={{\left( x+iy \right)}^{2}}\) then \(\sqrt{a-ib-c{{i}^{2}}-d{{i}^{3}...

If a+ib+ci2+di3=(x+iy)2a+ib+c{{i}^{2}}+d{{i}^{3}}={{\left( x+iy \right)}^{2}} then aibci2di3\sqrt{a-ib-c{{i}^{2}}-d{{i}^{3}}} is equal to
A. –x + iy
B. –x – iy
C. x – iy
D. x + iy

Explanation

Solution

Hint: We will start by simplifying the expression to us by using i3=i and i2=1{{i}^{3}}=-i\ and\ {{i}^{2}}=-1. Then we will take the conjugate on both side of the equation and again use the properties like i3=i and i2=1{{i}^{3}}=-i\ and\ {{i}^{2}}=-1 to form the term aib+ci2di3a-ib+c{{i}^{2}}-d{{i}^{3}} in left hand side and further solve the equation to get the answer.

Complete step-by-step answer:
Now, we have been given that,
a+ib+ci2+di3=(x+iy)2a+ib+c{{i}^{2}}+d{{i}^{3}}={{\left( x+iy \right)}^{2}}
Now, we know that the properties of i (iota) is,
i2=1 i3=i \begin{aligned} & {{i}^{2}}=-1 \\\ & {{i}^{3}}=-i \\\ \end{aligned}
So, using this in LHS we have
a+ibcid=(x+iy)2a+ib-c-id={{\left( x+iy \right)}^{2}}
Now, we will conjugate on both sides. We know the conjugate of a complex number a+iba+ib is aiba-ib.
Therefore, we have,
(ac)i(bd)=(xiy)2\left( a-c \right)-i\left( b-d \right)={{\left( x-iy \right)}^{2}}
Now, expanding the terms in LHS we have,
acib+id=(xiy)2a-c-ib+id={{\left( x-iy \right)}^{2}}
Now, we know that the fact that,
i2=1 i3=i \begin{aligned} & {{i}^{2}}=-1 \\\ & {{i}^{3}}=-i \\\ \end{aligned}
So, using this we have,
aib+ci2di3=(xiy)2 aib+ci2di3=xiy \begin{aligned} & a-ib+c{{i}^{2}}-d{{i}^{3}}={{\left( x-iy \right)}^{2}} \\\ & \sqrt{a-ib+c{{i}^{2}}-d{{i}^{3}}}=x-iy \\\ \end{aligned}
Hence, the correct option is (C).

Note: To solve this question we have used the properties of i (iota) that i×i=1 and i3=ii\times i=-1\ and\ {{i}^{3}}=-i. Also, it is important to note that we have used the conjugate of a complex number for converting a complex number x+iy to xiyx+iy\ to\ x-iy. Also, the conjugate of a complex number z2=z2=(z2){{z}^{2}}=\overline{{{z}^{2}}}=\left( \overline{{{z}^{2}}} \right). So, we can insert the conjugate inside the bracket from outside.