Solveeit Logo

Question

Question: If \(a=i-k\) , \(b=xi+j+\left( 1-x \right)k\) and \(c=yi+xj+\left( 1+x-y \right)k\). Then, \(\left[ ...

If a=ika=i-k , b=xi+j+(1x)kb=xi+j+\left( 1-x \right)k and c=yi+xj+(1+xy)kc=yi+xj+\left( 1+x-y \right)k. Then, [a b c]\left[ a\text{ }b\text{ }c \right] depends on?
1. Neither xx nor yy .
2. Both xx and yy .
3. Only xx .
4. Only yy .

Explanation

Solution

In this problem we need to check whether the value of [a b c]\left[ a\text{ }b\text{ }c \right] depends on the variables xx and yy . For this we will first calculate the value of [a b c]\left[ a\text{ }b\text{ }c \right] by using the values of given vectors aa , bb and cc. We will simplify the obtained determinant by performing column operations or the row operations. From the simplified value of [a b c]\left[ a\text{ }b\text{ }c \right] we can check whether the value is depending on the variables xx and yy.

Complete step by step answer:
Given values of the vectors are a=ika=i-k , b=xi+j+(1x)kb=xi+j+\left( 1-x \right)k and c=yi+xj+(1+xy)kc=yi+xj+\left( 1+x-y \right)k.
Now the value of [a b c]\left[ a\text{ }b\text{ }c \right] can be written as
[a b c]=101 x11x yx1+xy \left[ a\text{ }b\text{ }c \right]=\left| \begin{matrix} 1 & 0 & -1 \\\ x & 1 & 1-x \\\ y & x & 1+x-y \\\ \end{matrix} \right|
Perform the column operation C3C3+C1{{C}_{3}}\to {{C}_{3}}+{{C}_{1}} in the above determinant, then we will have
[a b c]=1011 x11x+x yx1+xy+y  [a b c]=100 x11 yx1+x  \begin{aligned} & \left[ a\text{ }b\text{ }c \right]=\left| \begin{matrix} 1 & 0 & 1-1 \\\ x & 1 & 1-x+x \\\ y & x & 1+x-y+y \\\ \end{matrix} \right| \\\ & \left[ a\text{ }b\text{ }c \right]=\left| \begin{matrix} 1 & 0 & 0 \\\ x & 1 & 1 \\\ y & x & 1+x \\\ \end{matrix} \right| \\\ \end{aligned}
Now the above determinant can be simplified as
[a b c]=111 x1+x \left[ a\text{ }b\text{ }c \right]=1\left| \begin{matrix} 1 & 1 \\\ x & 1+x \\\ \end{matrix} \right|
Use the determinant formula ab cd =adbc\left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=ad-bc in the above equation.
[a b c]=1[1(1+x)1(x)]\left[ a\text{ }b\text{ }c \right]=1\left[ 1\left( 1+x \right)-1\left( x \right) \right]
Distribution law of multiplication says that a(b+c)=ab+aca\left( b+c \right)=ab+ac . Apply this formula in the above equation.
[a b c]=1[1+xx]\left[ a\text{ }b\text{ }c \right]=1\left[ 1+x-x \right]
We know that the value of xxx-x is equal to 00 . Now the above equation is modified as
[a b c]=1(1) [a b c]=1 \begin{aligned} & \left[ a\text{ }b\text{ }c \right]=1\left( 1 \right) \\\ & \Rightarrow \left[ a\text{ }b\text{ }c \right]=1 \\\ \end{aligned}

The value of [a b c]\left[ a\text{ }b\text{ }c \right] is equal to 11 and there is no presence of any variable like xx and yy in the value of [a b c]\left[ a\text{ }b\text{ }c \right] which shows that the value [a b c]\left[ a\text{ }b\text{ }c \right] doesn’t depend on the variables xx and yy even though the vectors aa , bb and cc are expressed in terms of xx and yy.

So, the correct answer is “Option 1”.

Note: In this problem while solving the determinant we have used the column operation to simplify the determinant. We can also perform the row operations to simplify the determinant or we can also directly calculate the determinant value by using the formula.