Solveeit Logo

Question

Question: If \(a = i + j + k,b = i + j,c = i\) and \((a \times b) \times c = \lambda a + \mu b\), then \(\lamb...

If a=i+j+k,b=i+j,c=ia = i + j + k,b = i + j,c = i and (a×b)×c=λa+μb(a \times b) \times c = \lambda a + \mu b, then λ+μ=\lambda + \mu =

A

0

B

1

C

2

D

3

Answer

0

Explanation

Solution

a.c=1\mathbf{a}.\mathbf{c} = 1 and b.c=1\mathbf{b}.\mathbf{c} = 1

Given that(a×b)×c=(c.a)b(c.b)a=μb+λa(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{c}.\mathbf{a})\mathbf{b} - (\mathbf{c}.\mathbf{b})\mathbf{a} = \mu\mathbf{b} + \lambda\mathbf{a}

where μ=c.a=1,λ=(c.b)=1\mu = \mathbf{c}.\mathbf{a} = 1,\lambda = - (\mathbf{c}.\mathbf{b}) = - 1

μ+λ=11=0\Rightarrow \mu + \lambda = 1 - 1 = 0.