Solveeit Logo

Question

Question: If \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\] and \[r\times a=b\times a,r\t...

If a=i^2j^+3k^a=\hat{i}-2\hat{j}+3\hat{k} and b=3i^+j^k^b=-3\hat{i}+\hat{j}-\hat{k} and r×a=b×a,r×b=a×br\times a=b\times a,r\times b=a\times b, then a unit vector in the direction of rr is
(a) ±13(2i^+j^k^)\pm \dfrac{1}{3}\left( -2\hat{i}+\hat{j}-\hat{k} \right)
(b) ±13(2i^j^+2k^)\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}+2\hat{k} \right)
(c) ±13(2i^j^2k^)\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}-2\hat{k} \right)
(d) None of these

Explanation

Solution

Hint: Use a cross product of two vectors to find the value of b×ab\times a and a×ba\times b. Assume the vector rr as r=xi^+yj^+zk^r=x\hat{i}+y\hat{j}+z\hat{k} and write the equations satisfying the given conditions. Solve those equations to get the value of the vector rr.

Complete step-by-step answer:
We have two vectors a=i^2j^+3k^a=\hat{i}-2\hat{j}+3\hat{k} and b=3i^+j^k^b=-3\hat{i}+\hat{j}-\hat{k}. There exists a third vector rr such that r×a=b×a,r×b=a×br\times a=b\times a,r\times b=a\times b. We will form equations satisfying the given properties to find a unit vector in the direction of the vector rr.
Let’s assume that we can write the vector rr as r=xi^+yj^+zk^r=x\hat{i}+y\hat{j}+z\hat{k}.
We will now find the value of b×ab\times a where a=i^2j^+3k^a=\hat{i}-2\hat{j}+3\hat{k} and b=3i^+j^k^b=-3\hat{i}+\hat{j}-\hat{k}.
We know that if there are two vectors a=a1i^+a2j^+a3k^a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} and b=b1i^+b2j^+b3k^b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}, then we have a×b=i^j^k^ a1a2a3 b1b2b3 a\times b=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\\ {{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\\ \end{matrix} \right| as the value of cross multiplication of vectors a=a1i^+a2j^+a3k^a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} and b=b1i^+b2j^+b3k^b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}.
Thus, when a=i^2j^+3k^a=\hat{i}-2\hat{j}+3\hat{k} and b=3i^+j^k^b=-3\hat{i}+\hat{j}-\hat{k}, we have a×b=i^j^k^ 123 311 =i^(23)j^(1+9)+k^(16)=i^8j^5k^a\times b=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ 1 & -2 & 3 \\\ -3 & 1 & -1 \\\ \end{matrix} \right|=\hat{i}\left( 2-3 \right)-\hat{j}\left( -1+9 \right)+\hat{k}\left( 1-6 \right)=-\hat{i}-8\hat{j}-5\hat{k}.
Now, we will evaluate the value of r×br\times b where r=xi^+yj^+zk^r=x\hat{i}+y\hat{j}+z\hat{k} and b=3i^+j^k^b=-3\hat{i}+\hat{j}-\hat{k}. Thus, we have r×b=i^j^k^ xyz 311 =i^(yz)j^(x+3z)+k^(x+3y)r\times b=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ x & y & z \\\ -3 & 1 & -1 \\\ \end{matrix} \right|=\hat{i}\left( -y-z \right)-\hat{j}\left( -x+3z \right)+\hat{k}\left( x+3y \right).
As we have r×b=a×br\times b=a\times b, we have i^8j^5k^=i^(yz)j^(x+3z)+k^(x+3y)-\hat{i}-8\hat{j}-5\hat{k}=\hat{i}\left( -y-z \right)-\hat{j}\left( -x+3z \right)+\hat{k}\left( x+3y \right).
Comparing the coefficients on both sides, we get y+z=1,3zx=8,x+3y=5y+z=1,3z-x=8,x+3y=-5.
We know that b×a=(a×b)b\times a=-\left( a\times b \right). Thus, we have b×a=(i^8j^5k^)=i^+8j^+5k^b\times a=-\left( -\hat{i}-8\hat{j}-5\hat{k} \right)=\hat{i}+8\hat{j}+5\hat{k}.
Now, we will evaluate the value of r×ar\times a. Thus, we have r×a=i^j^k^ xyz 123 =i^(3y+2z)j^(3xz)+k^(2xy)r\times a=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ x & y & z \\\ 1 & -2 & 3 \\\ \end{matrix} \right|=\hat{i}\left( 3y+2z \right)-\hat{j}\left( 3x-z \right)+\hat{k}\left( -2x-y \right).
As we have r×a=b×ar\times a=b\times a, we have i^+8j^+5k^=i^(3y+2z)j^(z+3x)+k^(2xy)\hat{i}+8\hat{j}+5\hat{k}=\hat{i}\left( 3y+2z \right)-\hat{j}\left( -z+3x \right)+\hat{k}\left( -2x-y \right).
Comparing the coefficients on both sides, we get 1=3y+2z,8=z3x,5=2xy1=3y+2z,8=z-3x,5=-2x-y.
Thus, we have the equations y+z=1,3zx=8,x+3y=5y+z=1,3z-x=8,x+3y=-5 and 1=3y+2z,8=z3x,5=2xy1=3y+2z,8=z-3x,5=-2x-y. We will now solve these equations by elimination method.
Multiplying equation y+z=1y+z=1 with 22 and subtracting it from equation 1=3y+2z1=3y+2z, we get 3y+2z2(y+z)=123y+2z-2\left( y+z \right)=1-2.
y=1\Rightarrow y=-1
Substituting the value y=1y=-1 in equation 5=y2x5=-y-2x , we have 5=12x5=1-2x. Further solving, we get 2x=4x=22x=-4\Rightarrow x=-2.
Substituting the value x=2x=-2 in equation 3zx=83z-x=8 , we have 3z(2)=83z-\left( -2 \right)=8. Further solving, we get 3z=6z=23z=6\Rightarrow z=2.
Thus, we have r=xi^+yj^+zk^=2i^j^+2k^r=x\hat{i}+y\hat{j}+z\hat{k}=-2\hat{i}-\hat{j}+2\hat{k}.
We want to find the unit vector in the direction of the vector rr. We will divide it by the value of r\left| r \right|.
We have r=x2+y2+z2=(2)2+(1)2+(2)2=9=±3\left| r \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -1 \right)}^{2}}+{{\left( 2 \right)}^{2}}}=\sqrt{9}=\pm 3.
Hence, the unit vector in direction of rr is rr=±13(2i^j^+2k^)\dfrac{r}{\left| r \right|}=\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}+2\hat{k} \right), which is option (b).

Note: We should observe that the vector rr lies in the plane perpendicular to both aa and bb. Also, one must keep in mind that we have to find the unit vector, not just any vector satisfying the conditions. We can also find the value of b×ab\times a by substituting the values in the matrix and finding its value. However, it will be time consuming. Thus, it’s better to use b×a=(a×b)b\times a=-\left( a\times b \right).