Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a=i^+2j^+2k^,b=5a =\hat{ i }+2 \hat{ j }+2 \hat{ k },| b |=5 and the angle between aa and bb is π/6\pi / 6, then the area of the triangle formed by these two vectors as two sides is

A

154\frac{15}{4}

B

152\frac{15}{2}

C

1515

D

1532\frac{15\sqrt{3}}{2}

Answer

154\frac{15}{4}

Explanation

Solution

The correct answer is A:154\frac{15}{4}
Given that;
a=i^+2j^+2k^\vec{a}=\hat{i}+2\hat{j}+2\hat{k}
b=5|b|=5
a=12+22+22\therefore |a|=\sqrt{1^2+2^2+2^2}
=3=3
Area of the triangle
=12a×b=\frac{1}{2}| a \times b |
=12absinθn^=\frac{1}{2} \,\| a |\,| b |\sin \theta \,\hat{ n }|
=12[3×5×sinπ6]=\frac{1}{2}\left[3 \times 5 \times \sin \frac{\pi}{6}\right]
(a=1+22+22=3)\left(\therefore| a |=\sqrt{1+2^{2}+2^{2}}=3\right)
=12[15×12]=154=\frac{1}{2}\left[15 \times \frac{1}{2}\right]=\frac{15}{4}