Question
Question: If a function is given by \[f\left( x \right)={{\sin }^{-1}}\left( \dfrac{2\times {{3}^{x}}}{1+{{9}^...
If a function is given by f(x)=sin−1(1+9x2×3x) then f′(−21)
(a) 2−3loge3
(b) 23loge3
(c) −3loge3
(d) 3loge3
Solution
Hint: In order to solve this question, we will first find the derivative of f(x) and then we will put the value of x as 2−1. To find the derivative of f(x), we should know about a few derivative formulas like chain rule, quotient rule given by - dxd(f(g(x)))=f′(g(x)).g′(x),dxdsin−1x=1−x21,dxd(ax)=axloga and dxd(vu)=v2vdxdu−udxdvBy using these formulas we can solve this question.
Complete step-by-step answer:
In this question, we have been asked to find the value of f′(−21) where f(x)=sin−1(1+9x2×3x). To solve this question, we should know that the derivatives of f(g(x)),sin−1x,ax,vu type function is given by dxd(f(g(x)))=f′(g(x)).g′(x),dxdsin−1x=1−x21,dxd(ax)=axloga and dxd(vu)=v2vdxdu−udxdv
Now, to solve this question, we will first find the derivative of sin−1 then 1+9x2×3x and then that of 3x and 9x. So, we can write
dxd(f(x))=dxd(sin−1(1+9x2×3x))
Here, we can see that the function is of the form f (g (x)) where g(x)=1+9x2×3x. So, we can apply the chain rule. Now, we know that dxdsin−1x=1−x21. So, for x=1+9x2×3x, we get,
dxd(f(x))=1−(1+9x2×3x)21.dxd(1+9x2×3x)
Now, we will simplify it. So, we get,
dxd(f(x))=(1+9x)2(1+9x)2−(2×3x)21.dxd(1+9x2×3x)
dxd(f(x))=(1+9x)2−(2×3x)2(1+9x)2.dxd(1+9x2×3x)
dxd(f(x))=(1+9x)2−(2×3x)21+9x.dxd(1+9x2×3x)
Now, we know using quotient rule that dxd(vu)=v2vdxdu−udxdv. So, we can write dxd(f(x)) for u=2×3x and v=1+9x, we get,
dxd(f(x))=(1+9x)2−(2×3x)2(1+9x).(1+9x)2(1+9x)dxd(2×3x)−(2×3x)dxd(1+9x)
Now, we know that dxdax=axloga. So, we can write dxd(2×3x)=2×3xlog3 and dxd(1+9x)=9xlog9. So, we get,
dxd(f(x))=(1+9x)2−(2×3x)2(1+9x).(1+9x)2(1+9x)(2×3x×log3)−(2×3x)(9xlog9)
Now, we will simplify it further, we get,
dxd(f(x))=(1+9x)(1+9x)2−(2×3x)22×3x×log3+9x×2×3xlog3−2×3x×9xlog9
dxd(f(x))=(1+9x)(1+9x)2−(2×3x)22×3x×log3+9x×2×3xlog3−2×3x×9xlog32
Now, we know that logan=nloga. So, we can write log32=2log3. So, we get,
dxd(f(x))=(1+9x)(1+9x)2−(2×3x)22×3x×log3+9x×2×3xlog3−4×3x×9xlog3
dxd(f(x))=(1+9x)(1+9x)2−(2×3x)22×3x×log3+(3x×9xlog3)×(2−4)
dxd(f(x))=(1+9x)(1+9x)2−(2×3x)22×3x×log3−2×3x×9xlog3
dxd(f(x))=(1+9x)(1+9x)2−(2×3x)22×3x×log3(1−9x)
We know that dxd(f(x))=f′(x). So, we can write,
f′(x)=(1+9x)(1+9x)2−(2×3x)22×3x×(1−9x)×log3
Now, we will put x=2−1 to get the value of f′(2−1). So, we get,
f′(2−1)=1+92−11+92−12−2×32−122×32−1×1−92−1×log3
Now, we know that 9=3. So, we get,
f′(2−1)=(1+31)(1+31)2−3432(1−31)log3
f′(2−1)=33[34916−34]4log3
f′(2−1)=33[34916−12]4log3
f′(2−1)=33×34×324log3
f′(2−1)=4×2×334×3×3×log3
f′(2−1)=23log3
Now, we know that 3=(3)2. So, we can write
f′(2−1)=23log(3)2
And we know that logmn=nlogm. So, we get,
f′(2−1)=23(2log3)
f′(2−1)=3log3
Hence, we can say that, for f(x)=sin−1(1+9x2×3x), we get f′(2−1)=3loge3
Therefore, option (d) is the right answer.
Note: While solving this question, there are high chances of calculation mistakes because it contains a lot of calculations. Also, we need to remember that derivative of sin−1x=1−x21. Sometimes in a hurry, we end up writing it as x2−11 or 1−x2−1 which is wrong. So, we have to remember a few standard derivatives and we have to be very careful while solving the question.