Solveeit Logo

Question

Question: If a function is given by \( f\left( x \right)=\cos \left( \log x \right) \) , then \( f\left( x \ri...

If a function is given by f(x)=cos(logx)f\left( x \right)=\cos \left( \log x \right) , then f(x)f(y)12(f(xy)+f(xy))f\left( x \right)f\left( y \right)-\dfrac{1}{2}\left( f\left( \dfrac{x}{y} \right)+f\left( xy \right) \right) is equal to:
(a) 1
(b) 2
(c) -2
(d) 0

Explanation

Solution

Hint : Start by using the definition of the function and putting the terms in the given expression. Then use the formula logaxlogay=logaxy{{\log }_{a}}x-{{\log }_{a}}y={{\log }_{a}}\dfrac{x}{y} and logax+logay=logaxy{{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy to simplify the expression. Finally, use the formula cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) and eliminate the removable terms to get the answer.

Complete step-by-step answer :
Let us start the solution to the above question by looking at some of the identities related to logarithmic functions.
logax+logay=logaxy{{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy
logaxlogay=logaxy{{\log }_{a}}x-{{\log }_{a}}y={{\log }_{a}}\dfrac{x}{y}
logabx=1blogax{{\log }_{{{a}^{b}}}}x=\dfrac{1}{b}{{\log }_{a}}x
logaxb=blogax{{\log }_{a}}{{x}^{b}}=b{{\log }_{a}}x
Now let us start the simplification of the expression given in the question.
f(x)f(y)12(f(xy)+f(xy))f\left( x \right)f\left( y \right)-\dfrac{1}{2}\left( f\left( \dfrac{x}{y} \right)+f\left( xy \right) \right)
If we use the definition f(x)=cos(logx)f\left( x \right)=\cos \left( \log x \right) , we get
cos(logx).cos(logy)12(cos(log(xy))+cos(log(xy)))\cos \left( \log x \right).\cos \left( \log y \right)-\dfrac{1}{2}\left( \cos \left( \log \left( \dfrac{x}{y} \right) \right)+\cos \left( \log \left( xy \right) \right) \right)
Now we know that logaxlogay=logaxy{{\log }_{a}}x-{{\log }_{a}}y={{\log }_{a}}\dfrac{x}{y} and logax+logay=logaxy{{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy . So, if we use this in our expression, we get
cos(logx).cos(logy)12(cos(logxlogy)+cos(logx+logy))\cos \left( \log x \right).\cos \left( \log y \right)-\dfrac{1}{2}\left( \cos \left( \log x-\log y \right)+\cos \left( \operatorname{logx}+logy \right) \right)
Now, we will use the formula cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) , such that A=logxlogyA=\log x-\log y and B=logxlogyB=\log x-\log y . On doing so, we get
cos(logx).cos(logy)12(2cos(logxlogy+logx+logy2)cos(logxlogylogxlogy2))\cos \left( \log x \right).\cos \left( \log y \right)-\dfrac{1}{2}\left( 2\cos \left( \dfrac{\log x-\log y+\log x+\log y}{2} \right)\cos \left( \dfrac{\log x-\log y-\log x-\log y}{2} \right) \right) =cos(logx).cos(logy)12(2cos(logx)cos(logy))=\cos \left( \log x \right).\cos \left( \log y \right)-\dfrac{1}{2}\left( 2\cos \left( \log x \right)\cos \left( -\log y \right) \right)
Now, we know that cos(-x)=cosx. So, using this in our expression, we get
cos(logx).cos(logy)cos(logx)cos(logy)\cos \left( \log x \right).\cos \left( \log y \right)-\cos \left( \log x \right)\cos \left( \log y \right)
Now, both the terms have the same magnitude but opposite signs, so they are cancelled. So, the final answer comes out to be:
cos(logx).cos(logy)cos(logx)cos(logy)=0\cos \left( \log x \right).\cos \left( \log y \right)-\cos \left( \log x \right)\cos \left( \log y \right)=0

So, the correct answer is “Option d”.

Note : The key to the above question is applying the identities related to logarithmic function, if you apply the formulas correctly with correct signs then it is a sure thing that you will reach your answer. Also, don’t miss the half in the expression, because it is a general mistake that students miss the constant factors in the questions involving large numbers of unknown terms.