Solveeit Logo

Question

Question: If a function is given as \(y=\sqrt{\dfrac{1-\cos x}{1+\cos x}}\) then \(\dfrac{dy}{dx}\) equals: ...

If a function is given as y=1cosx1+cosxy=\sqrt{\dfrac{1-\cos x}{1+\cos x}} then dydx\dfrac{dy}{dx} equals:
A.12sec2x2\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}
B.12csc2x2\dfrac{1}{2}{{\csc }^{2}}\dfrac{x}{2}
C.sec2x2{{\sec }^{2}}\dfrac{x}{2}
D.csc2x2{{\csc }^{2}}\dfrac{x}{2}

Explanation

Solution

Hint: It is given that y=1cosx1+cosxy=\sqrt{\dfrac{1-\cos x}{1+\cos x}}. We know that 1cosx=2sin2x21-\cos x=2{{\sin }^{2}}\dfrac{x}{2} and 1+cosx=2cos2x21+\cos x=2{{\cos }^{2}}\dfrac{x}{2} so substituting the values of (1cosx)&(1+cosx)\left( 1-\cos x \right)\And \left( 1+\cos x \right) in equation of y we get, y=tanx2y=\tan \dfrac{x}{2}. Now, differentiate y with respect to x which will give the required answer. The differentiation is done using chain rule.

Complete step-by-step answer:
It is given that:
y=1cosx1+cosxy=\sqrt{\dfrac{1-\cos x}{1+\cos x}}
We know that,
1cosx=2sin2x21-\cos x=2{{\sin }^{2}}\dfrac{x}{2}
1+cosx=2cos2x21+\cos x=2{{\cos }^{2}}\dfrac{x}{2}
Substituting the above values of (1cosx)&(1+cosx)\left( 1-\cos x \right)\And \left( 1+\cos x \right) in equation of y we get,
y=1cosx1+cosx y=2sin2x22cos2x2 \begin{aligned} & y=\sqrt{\dfrac{1-\cos x}{1+\cos x}} \\\ & \Rightarrow y=\sqrt{\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}}} \\\ \end{aligned}
In the above equation, 2 will be cancelled out from the numerator and the denominator.
y=sin2x2cos2x2 y=(sinx2cosx2)2.........Eq.(1) \begin{aligned} & y=\sqrt{\dfrac{{{\sin }^{2}}\dfrac{x}{2}}{{{\cos }^{2}}\dfrac{x}{2}}} \\\ & \Rightarrow y=\sqrt{{{\left( \dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)}^{2}}}.........Eq.\left( 1 \right) \\\ \end{aligned}
We know that,
tanx2=sinx2cosx2\tan \dfrac{x}{2}=\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}
Substituting the above relation in eq. (1) we get,
y=(tanx2)2 y=tanx2.........Eq.(2) \begin{aligned} & y=\sqrt{{{\left( \tan \dfrac{x}{2} \right)}^{2}}} \\\ & \Rightarrow y=\tan \dfrac{x}{2}.........Eq.\left( 2 \right) \\\ \end{aligned}
Let us assume that;
x2=t\dfrac{x}{2}=t
On cross – multiplying the above equation we get,
x=2tx=2t
Differentiating on both the sides we get,
dx=2dtdx=2dt……….. Eq. (3)
Substituting x2=t\dfrac{x}{2}=t in eq. (2) we get,
y=tanty=\tan t
Differentiating both the sides with respect to x we get,
dydt=sec2t\dfrac{dy}{dt}={{\sec }^{2}}t……. Eq. (4)
As we have to find dydx\dfrac{dy}{dx} so we can write dydt\dfrac{dy}{dt} as follows:
dydt=dydx(dxdt)\dfrac{dy}{dt}=\dfrac{dy}{dx}\left( \dfrac{dx}{dt} \right)…… Eq. (5)
Rearranging eq. (3) we get,
dx=2dt dxdt=2 \begin{aligned} & dx=2dt \\\ & \Rightarrow \dfrac{dx}{dt}=2 \\\ \end{aligned}
Substituting the above value in eq. (5) we get,
dydt=dydx(2)\dfrac{dy}{dt}=\dfrac{dy}{dx}\left( 2 \right)
Now, substituting the above value in eq. (4) and t=x2t=\dfrac{x}{2} we get,
2dydx=sec2x22\dfrac{dy}{dx}={{\sec }^{2}}\dfrac{x}{2}
Dividing 2 on both the sides of the above equation we get,
dydx=12sec2x2\dfrac{dy}{dx}=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}
From the above solution, we have got the derivative of y=1cosx1+cosxy=\sqrt{\dfrac{1-\cos x}{1+\cos x}} with respect to x is 12sec2x2\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}.
Hence, the correct option is (a).

Note: The plausible areas in the solution where you can go wrong is:
In writing the trigonometric identity of (1cosx)&(1+cosx)\left( 1-\cos x \right)\And \left( 1+\cos x \right), you might interchange the values corresponding to these trigonometric functions which is demonstrated below.
1cosx=2cos2x21-\cos x=2{{\cos }^{2}}\dfrac{x}{2}
1+cosx=2sin2x21+\cos x=2{{\sin }^{2}}\dfrac{x}{2}
Be careful about where 2 should come in the result of the derivative with respect to x. There is a chance of calculation mistake in the final answer whether 2 should be multiplied or divided by sec2x2{{\sec }^{2}}\dfrac{x}{2}.