Question
Question: If a function is given as \(y=\dfrac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x...
If a function is given as y=1−sinx−1+sinx1−sinx+1+sinx, then dxdy is equal to
(a) −21sec22x
(b) −21sec2x
(c) −21sec2x
(d) −sec22x
Solution
First solve (1−sinx) and (1+sinx), then substitute in the given expression and simplify the expression. Then apply the Quotient rule of differentiation.
Complete step-by-step solution -
Given,
y=1−sinx−1+sinx1−sinx+1+sinx.........(i)
First we will solve (1−sinx) and (1+sinx) separately.
We know, sin2x+cos2x=1,sin2x=2sinxcosx
So,
1−sinx=sin22x+cos22x−2sin2xcos2x
And (a−b)2=a2+b2−2ab, so
1−sinx=(sin2x−cos2x)2…….(ii)
Similarly,
1+sinx=(sin2x+cos2x)2…….(iii)
Substituting equation (ii) and (iii) in equation (i), we get
y=(sin2x−cos2x)2−(sin2x+cos2x)2(sin2x−cos2x)2+(sin2x+cos2x)2
⇒y=sin2x−cos2x−(sin2x+cos2x)sin2x−cos2x+sin2x+cos2x
⇒y=−2cos2x2sin2x
⇒y=−cos2xsin2x
Now we will differentiate with respect to x, we get
⇒dxdy=dxd−cos2xsin2x
Now we will apply the quotient rule, i.e., (v(x)u(x))′=v(x)2u′(x).v(x)−u(x).v′(x), so
⇒dxdy=−(cos2x)2dxd(sin2x)×(cos2x)−(sin2x)dxd(cos2x)
We know differentiation of sinx and cosx is cosx and −sinx, so above equation becomes,
⇒dxdy=−(cos2x)2cos2xdxd(2x)×(cos2x)−(sin2x)(−sin2x)dxd(2x)
⇒dxdy=−(cos2x)2cos22x(21)+(sin22x)(21)
⇒dxdy=−(cos2x)221(cos22x+(sin22x))
But (sin2x+cos2x=1), so above equation becomes,
⇒dxdy=−(cos2x)221(1)
⇒dxdy=−2cos22x1
But we know, secx=cosx1, so above equation becomes,
⇒dxdy=−21sec2x
Hence, the correct option for the given question is option (a).
So,the answer is option (a).
Note: In this seeing the question we will first rationalize the given equation and try to find the differentiation. It is possible to get the answer but the solution process will be lengthy.