Solveeit Logo

Question

Question: If a function is given as\[y=\dfrac{1}{a+\sqrt{x}}\], then find the value of \[\dfrac{{{d}^{2}}y}{d{...

If a function is given asy=1a+xy=\dfrac{1}{a+\sqrt{x}}, then find the value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.

Explanation

Solution

Hint: The first order derivative is found using the formula ddx(un)=nun1ddx(u)\dfrac{d}{dx}({{u}^{n}})=n{{u}^{n-1}}\dfrac{d}{dx}(u). And the second order derivative is found using the formula ddx(uv)=uddxv+vddxu\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u.

Complete step-by-step solution -
The given expression is
y=1a+xy=\dfrac{1}{a+\sqrt{x}}
This can be re-written as,
y=(a+x)1y={{\left( a+\sqrt{x} \right)}^{-1}}
Now we will find the first order derivative of the given expression, so we will differentiate the given expression with respect to x'x', we get
ddx(y)=ddx((a+x)1)\dfrac{d}{dx}(y)=\dfrac{d}{dx}\left( {{\left( a+\sqrt{x} \right)}^{-1}} \right)
Now we know ddx(un)=nun1ddx(u)\dfrac{d}{dx}({{u}^{n}})=n{{u}^{n-1}}\dfrac{d}{dx}(u) , applying this formula, the above equation becomes,
dydx=(1)(a+x)11ddx(a+x)\dfrac{dy}{dx}=(-1){{\left( a+\sqrt{x} \right)}^{-1-1}}\dfrac{d}{dx}\left( a+\sqrt{x} \right)
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., ddx(u+v)=dx(u)+dx(v)\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v) . Applying this formula in the above equation, we get
dydx=(1)(a+x)2[ddx(a)+ddx(x)12]\dfrac{dy}{dx}=(-1){{\left( a+\sqrt{x} \right)}^{-2}}\left[ \dfrac{d}{dx}\left( a \right)+\dfrac{d}{dx}{{\left( x \right)}^{\dfrac{1}{2}}} \right]
We know the differentiation of constant term is always zero, so
dydx=(1)(a+x)2[0+ddx(x)12]\dfrac{dy}{dx}=(-1){{\left( a+\sqrt{x} \right)}^{-2}}\left[ 0+\dfrac{d}{dx}{{\left( x \right)}^{\dfrac{1}{2}}} \right]
Now applying the formula ddx(xn)=nxn1\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}, the above equation becomes,
dydx=1(a+x)2×12×(x)121\dfrac{dy}{dx}=\dfrac{-1}{{{\left( a+\sqrt{x} \right)}^{2}}}\times \dfrac{1}{2}\times {{\left( x \right)}^{\dfrac{1}{2}-1}}

& \dfrac{dy}{dx}=\dfrac{-1}{{{\left( a+\sqrt{x} \right)}^{2}}}\times \dfrac{1}{2}\times {{\left( x \right)}^{\dfrac{1-2}{2}}} \\\ & \dfrac{dy}{dx}=\dfrac{-1}{{{\left( a+\sqrt{x} \right)}^{2}}}\times \dfrac{1}{2}\times {{\left( x \right)}^{\dfrac{-1}{2}}} \\\ & \dfrac{dy}{dx}=\dfrac{-1}{2}{{\left( a+\sqrt{x} \right)}^{-2}}\times {{\left( x \right)}^{\dfrac{-1}{2}}} \\\ \end{aligned}$$ Now we need to find the second order derivative, so we will differentiate the above equation with respect to $'x'$, we get $$\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{-1}{2}{{\left( a+\sqrt{x} \right)}^{-2}}\times {{\left( x \right)}^{\dfrac{-1}{2}}} \right)$$ Taking out the constant term, we get $$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\dfrac{d}{dx}\left( {{\left( a+\sqrt{x} \right)}^{-2}}\times {{\left( x \right)}^{\dfrac{-1}{2}}} \right)$$ We know the product rule as, $$\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u$$, applying this formula in the above equation, we get $$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ {{\left( a+\sqrt{x} \right)}^{-2}}\dfrac{d}{dx}\left( {{\left( x \right)}^{\dfrac{-1}{2}}} \right)+{{\left( x \right)}^{\dfrac{-1}{2}}}\dfrac{d}{dx}\left( {{\left( a+\sqrt{x} \right)}^{-2}} \right) \right]$$ Now we know $\dfrac{d}{dx}({{u}^{n}})=n{{u}^{n-1}}\dfrac{d}{dx}(u)$ , applying this formula, the above equation becomes, $$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ {{\left( a+\sqrt{x} \right)}^{-2}}\left( \dfrac{-1}{2} \right){{\left( x \right)}^{\dfrac{-1}{2}-1}}+{{\left( x \right)}^{\dfrac{-1}{2}}}(-2){{\left( a+\sqrt{x} \right)}^{-2-1}}\dfrac{d}{dx}\left( a+\sqrt{x} \right) \right]$$ Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., $\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$ . Applying this formula in the above equation, we get $$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ {{\left( a+\sqrt{x} \right)}^{-2}}\left( \dfrac{-1}{2} \right){{\left( x \right)}^{\dfrac{-1-2}{2}}}-2{{\left( x \right)}^{\dfrac{-1}{2}}}{{\left( a+\sqrt{x} \right)}^{-3}}\left[ \dfrac{d}{dx}\left( a \right)+\dfrac{d}{dx}{{\left( x \right)}^{\dfrac{1}{2}}} \right] \right]$$ $$\begin{aligned} & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right){{\left( x \right)}^{\dfrac{-3}{2}}}-\dfrac{2}{\sqrt{x}}.\dfrac{1}{{{\left( a+\sqrt{x} \right)}^{3}}}\left[ 0+\dfrac{1}{2}{{\left( x \right)}^{\dfrac{1}{2}-1}} \right] \right] \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right)\dfrac{1}{{{\left( x \right)}^{\dfrac{3}{2}}}}-\dfrac{2}{\sqrt{x}}.\dfrac{1}{{{\left( a+\sqrt{x} \right)}^{3}}}\left[ \dfrac{1}{2}{{\left( x \right)}^{\dfrac{-1}{2}}} \right] \right] \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right)\dfrac{1}{{{\left( x \right)}^{\dfrac{3}{2}}}}-\dfrac{2}{\sqrt{x}}.\dfrac{1}{{{\left( a+\sqrt{x} \right)}^{3}}}\left[ \dfrac{1}{2\sqrt{x}} \right] \right] \\\ \end{aligned}$$ Cancelling the like terms, we get $$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{2}\left[ \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right)\dfrac{1}{{{\left( x \right)}^{\dfrac{3}{2}}}}-\dfrac{1}{x{{\left( a+\sqrt{x} \right)}^{3}}} \right]$$ Opening the bracket, we get $$\begin{aligned} & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{-1}{2} \right).\dfrac{1}{{{\left( a+\sqrt{x} \right)}^{2}}}\left( \dfrac{-1}{2} \right)\dfrac{1}{{{\left( x \right)}^{\dfrac{3}{2}}}}-\left( \dfrac{-1}{2} \right).\dfrac{1}{x{{\left( a+\sqrt{x} \right)}^{3}}} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{4{{\left( a+\sqrt{x} \right)}^{2}}{{\left( x \right)}^{\dfrac{3}{2}}}}+\dfrac{1}{2x{{\left( a+\sqrt{x} \right)}^{3}}} \\\ \end{aligned}$$ Taking the LCM, we get $$\begin{aligned} & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( a+\sqrt{x} \right)+2\sqrt{x}}{4{{\left( a+\sqrt{x} \right)}^{3}}{{\left( x \right)}^{\dfrac{3}{2}}}} \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( a+3\sqrt{x} \right)}{4{{\left( x \right)}^{\dfrac{3}{2}}}}\times \dfrac{1}{{{\left( a+\sqrt{x} \right)}^{3}}} \\\ \end{aligned}$$ From the given expression we have $$y=\dfrac{1}{a+\sqrt{x}}$$ , substituting this value in above equation, we get $$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( a+3\sqrt{x} \right)}{4{{\left( x \right)}^{\dfrac{3}{2}}}}\times {{y}^{3}}$$ This is the required answer. Note: The way to solve the first and second order derivative is using the formula, $\dfrac{d}{dx}\left( \dfrac{1}{u(x)} \right)=-\dfrac{u'(x)}{u{{(x)}^{2}}}$ . In this method also we will get the same result.