Solveeit Logo

Question

Question: If a function is given as \[y=5{{e}^{7x}}+6{{e}^{-7x}}\] then show that \[\dfrac{{{d}^{2}}y}{d{{x}^{...

If a function is given as y=5e7x+6e7xy=5{{e}^{7x}}+6{{e}^{-7x}} then show that d2ydx2=49y.\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=49y.

Explanation

Solution

We have been given that a function y is 5e7x+6e7x.5{{e}^{7x}}+6{{e}^{-7x}}. We are supposed to find the second derivative and then show that it is equal to 49y. So, first, we will find the first derivative. We know that d(A+B)dx=d(A)dx+d(B)dx,\dfrac{d\left( A+B \right)}{dx}=\dfrac{d\left( A \right)}{dx}+\dfrac{d\left( B \right)}{dx}, and then we will use the result d(eax)dx=eax.d(ax)dx\dfrac{d\left( {{e}^{ax}} \right)}{dx}={{e}^{ax}}.\dfrac{d\left( ax \right)}{dx} to simplify further. Once we get the first derivative, we will differentiate it again to find the second derivative. Then we will take 72{{7}^{2}} out and find our required solution.

Complete step-by-step answer:
We have y given as y=5e7x+6e7xy=5{{e}^{7x}}+6{{e}^{-7x}} and we have to double differentiate y to verify that d2ydx2=49y.\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=49y.
Let us consider y=5e7x+6e7xy=5{{e}^{7x}}+6{{e}^{-7x}}
Now, taking derivative, we have
d(y)dx=d(5e7x+6e7x)dx\dfrac{d\left( y \right)}{dx}=\dfrac{d\left( 5{{e}^{7x}}+6{{e}^{-7x}} \right)}{dx}
So, applying the rule d(A+B)dx=d(A)dx+d(B)dx,\dfrac{d\left( A+B \right)}{dx}=\dfrac{d\left( A \right)}{dx}+\dfrac{d\left( B \right)}{dx}, to the above, we have
d(y)dx=d(5e7x)dx+d(6e7x)dx\Rightarrow \dfrac{d\left( y \right)}{dx}=\dfrac{d\left( 5{{e}^{7x}} \right)}{dx}+\dfrac{d\left( 6{{e}^{-7x}} \right)}{dx}
Taking constants outside from each term, we get,
dydx=5d(e7x)dx+6d(e7x)dx\Rightarrow \dfrac{dy}{dx}=5\dfrac{d\left( {{e}^{7x}} \right)}{dx}+6\dfrac{d\left( {{e}^{-7x}} \right)}{dx}
We know that, d(ez)dx=ezdzdx.\dfrac{d\left( {{e}^{z}} \right)}{dx}={{e}^{z}}\dfrac{dz}{dx}.
So, we can write the derivative as d(e7x)dx=e7xd(7x)dx\dfrac{d\left( {{e}^{7x}} \right)}{dx}={{e}^{7x}}\dfrac{d\left( 7x \right)}{dx}
d(e7x)dx=e7x.7.....(i)\Rightarrow \dfrac{d\left( {{e}^{7x}} \right)}{dx}={{e}^{7x}}.7.....\left( i \right)
Similarly, we have
d(e7x)dx=e7xd(7x)dx\dfrac{d\left( {{e}^{-7x}} \right)}{dx}={{e}^{-7x}}\dfrac{d\left( -7x \right)}{dx}
d(e7x)dx=e7x(7).....(ii)\Rightarrow \dfrac{d\left( {{e}^{7x}} \right)}{dx}={{e}^{-7x}}\left( -7 \right).....\left( ii \right)
Putting the above values from (i) and (ii) in derivative, we get,
dydx=5×7×e7x+6×(7)×e7x\Rightarrow \dfrac{dy}{dx}=5\times 7\times {{e}^{7x}}+6\times \left( -7 \right)\times {{e}^{-7x}}
Taking 7 as common, we get
dydx=7(5e7x6e7x)\Rightarrow \dfrac{dy}{dx}=7\left( 5{{e}^{7x}}-6{{e}^{-7x}} \right)
We have got the first derivative. Now we have to differente it again to get the second derivative. So, we get,
d(dydx)dx=d(7(5e7x6e7x))dx\Rightarrow \dfrac{d\left( \dfrac{dy}{dx} \right)}{dx}=\dfrac{d\left( 7\left( 5{{e}^{7x}}-6{{e}^{-7x}} \right) \right)}{dx}
Taking the constant, i.e 7 outside, we get
d2ydx2=7d(5e7x6e7x)dx\Rightarrow \dfrac{{{d}^{2y}}}{d{{x}^{2}}}=7\dfrac{d\left( 5{{e}^{7x}}-6{{e}^{-7x}} \right)}{dx}
Simplifying using rule, we get,
d2ydx2=7[5d(e7x)dx6d(e7x)dx]\Rightarrow \dfrac{{{d}^{2y}}}{d{{x}^{2}}}=7\left[ 5\dfrac{d\left( {{e}^{7x}} \right)}{dx}-6\dfrac{d\left( {{e}^{-7x}} \right)}{dx} \right]
Using (i) and (ii), we get,
d2ydx2=7[5(7)e7x6(7)e7x]\Rightarrow \dfrac{{{d}^{2y}}}{d{{x}^{2}}}=7\left[ 5\left( 7 \right){{e}^{7x}}-6\left( -7 \right){{e}^{-7x}} \right]
Again, taking 7 common, we have
d2ydx2=7[5(7)e7x+6(7)e7x]\Rightarrow \dfrac{{{d}^{2y}}}{d{{x}^{2}}}=7\left[ 5\left( 7 \right){{e}^{7x}}+6\left( 7 \right){{e}^{-7x}} \right]
Taking 7 out from both the terms, we get,
d2ydx2=72[5e7x+6e7x]\Rightarrow \dfrac{{{d}^{2y}}}{d{{x}^{2}}}={{7}^{2}}\left[ 5{{e}^{7x}}+6{{e}^{-7x}} \right]
We know that, 72=49{{7}^{2}}=49 and 5e7x+6e7x=y.5{{e}^{7x}}+6{{e}^{-7x}}=y. So, we get,
d2ydx2=49y\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=49y
Hence we have proved the result.

Note: We should note that d(e7x)dxe7x.\dfrac{d\left( {{e}^{-7x}} \right)}{dx}\ne {{e}^{-7x}}. Here we have to apply the product rule.
d(e7x)dx=(e7x)×d(7x)dx\dfrac{d\left( {{e}^{-7x}} \right)}{dx}=\left( {{e}^{-7x}} \right)\times \dfrac{d\left( -7x \right)}{dx}
d(e7x)dx=e7x×(7)\Rightarrow \dfrac{d\left( {{e}^{-7x}} \right)}{dx}={{e}^{-7x}}\times \left( -7 \right)
d(e7x)dx=7e7x\Rightarrow \dfrac{d\left( {{e}^{-7x}} \right)}{dx}=-7{{e}^{-7x}}
Whenever the power or the exponential has power different than x, then we have to take the derivative separately for a clear solution.