Solveeit Logo

Question

Question: If \(a < \frac { 1 } { 32 }\) then the number of solution of\(\left( \sin ^ { - 1 } x \right) ^ { ...

If a<132a < \frac { 1 } { 32 } then the number of solution of(sin1x)3+(cos1x)3=aπ3\left( \sin ^ { - 1 } x \right) ^ { 3 } + \left( \cos ^ { - 1 } x \right) ^ { 3 } = a \pi ^ { 3 } is.

A

0

B

1

C

2

D

Infinite

Answer

0

Explanation

Solution

From previous solution π332(sin1x)3+(cos1x)37π8\frac { \pi ^ { 3 } } { 32 } \leq \left( \sin ^ { - 1 } x \right) ^ { 3 } + \left( \cos ^ { - 1 } x \right) ^ { 3 } \leq \frac { 7 \pi } { 8 }

Here a<132a < \frac { 1 } { 32 }. So, number of solution is zero.