Solveeit Logo

Question

Mathematics Question on Transpose of a Matrix

If A=13[122 212 a2b;]A = \frac{1}{3} \begin{bmatrix}1&2&2\\\ 2&1&-2\\\ a&2&b;\end{bmatrix} is an orthogonal matrix, then

A

a = - 2, b = - 1

B

a = 2, b = 1

C

a = 2, b = - 1

D

a = - 2, b = 1

Answer

a = - 2, b = - 1

Explanation

Solution

As A is an orthogonal matrix, AAT=IAA^T = I
13[122 212 a2b;].13[12a; 212 22b;]=[100 010 001]\Rightarrow \frac{1}{3} \begin{bmatrix}1&2&2\\\ 2&1&-2\\\ a&2&b;\end{bmatrix} . \frac{1}{3} \begin{bmatrix}1&2&a;\\\ 2&1&2\\\ 2&-2&b;\end{bmatrix} = \begin{bmatrix}1&0&0\\\ 0&1&0\\\ 0&0&1\end{bmatrix}
19[122 212 a2b;][12a; 212 22b;]=[100 010 001]\Rightarrow \frac{1}{9} \begin{bmatrix}1&2&2\\\ 2&1&-2\\\ a&2&b;\end{bmatrix} \begin{bmatrix}1&2&a;\\\ 2&1&2\\\ 2&-2&b;\end{bmatrix} = \begin{bmatrix}1&0&0\\\ 0&1&0\\\ 0&0&1\end{bmatrix}
[90a;+4+2b 092a+22b a+4+2b2a+22ba;2+4+b2]=[900 090 009]\Rightarrow \begin{bmatrix}9&0&a;+4+2b\\\ 0&9&2a+2-2b\\\ a+4+2b&2a+2-2b&a;^{2}+4+b^{2}\end{bmatrix} = \begin{bmatrix}9&0&0\\\ 0&9&0\\\ 0&0&9\end{bmatrix}
a+4+2b=0,2a+22b=0,a2+4+b2=9\Rightarrow a + 4 + 2b = 0, 2a + 2 - 2b = 0 , a^{2} + 4 + b^{2} = 9
a+2b+4=0,ab+1=0a2+b2=5\Rightarrow a + 2b + 4 = 0, a - b + 1 = 0 a^{2} + b^{2} = 5
a=2,b=1\Rightarrow a = - 2, b = - 1