Solveeit Logo

Question

Mathematics Question on complex numbers

If a=eiθa = e^{i \theta} , then 1+a1a\frac{1 + a}{1-a} is equal to

A

cotθ2\cot \frac{\theta}{2}

B

tanθ\tan \theta

C

icotθ2i \, \cot \frac{\theta}{2}

D

itanθ2i \, \tan \frac{\theta}{2}

Answer

icotθ2i \, \cot \frac{\theta}{2}

Explanation

Solution

We have,
a=eiθa=e^{i \theta}
=cosθ+isinθ=\cos \theta+i \,\sin \,\theta
Now, 1+a1a=1+(cosθ+isinθ)1(cosθ+isinθ)\frac{1+a}{1-a}=\frac{1+(\cos\, \theta+i \sin \,\theta)}{1-(\cos \,\theta+i \,\sin\,\theta)}
=(1+cosθ)+isinθ(1cosθ)isinθ=\frac{(1+\cos\, \theta)+i\, \sin\, \theta}{(1-\cos \,\theta)-i \,\sin\, \theta}
=2cos2θ2+i2sinθ2cosθ22sin2θ2i2sinθ2cosθ2=\frac{2 \,\cos ^{2} \frac{\theta}{2}+i \,2 \,\sin \frac{\theta}{2} \,\cos \frac{\theta}{2}}{2 \,\sin ^{2} \frac{\theta}{2}-i\, 2 \,\sin \frac{\theta}{2} \,\cos \frac{\theta}{2}}
=2cosθ2[cosθ2+isinθ2]2sinθ2[sinθ2icosθ2]=\frac{2\, \cos \frac{\theta}{2}\left[\cos \frac{\theta}{2}+i \,\sin \frac{\theta}{2}\right]}{2 \,\sin \frac{\theta}{2}\left[\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}\right]}
=cotθ2[cosθ2+isinθ2]i[cosθ2+isinθ2]=\frac{\cot \frac{\theta}{2}\left[\cos \frac{\theta}{2}+i \,\sin \frac{\theta}{2}\right]}{-i\,\left[\cos \frac{\theta}{2}+i\, \sin \frac{\theta}{2}\right]}
cotθ2i\frac{\cot \frac{\theta}{2}}{-i}
=icotθ2= i \cot \frac{\theta}{2}