Question
Mathematics Question on complex numbers
If a=eiθ , then 1−a1+a is equal to
A
cot2θ
B
tanθ
C
icot2θ
D
itan2θ
Answer
icot2θ
Explanation
Solution
We have,
a=eiθ
=cosθ+isinθ
Now, 1−a1+a=1−(cosθ+isinθ)1+(cosθ+isinθ)
=(1−cosθ)−isinθ(1+cosθ)+isinθ
=2sin22θ−i2sin2θcos2θ2cos22θ+i2sin2θcos2θ
=2sin2θ[sin2θ−icos2θ]2cos2θ[cos2θ+isin2θ]
=−i[cos2θ+isin2θ]cot2θ[cos2θ+isin2θ]
−icot2θ
=icot2θ