Solveeit Logo

Question

Mathematics Question on limits and derivatives

If a=limnk=1n2nn2+k2a =\displaystyle\lim _{ n \rightarrow \infty} \sum_{ k =1}^{ n } \frac{2 n }{ n ^2+ k ^2} and f(x)=1cosx1+cosx,x(0,1)f(x)=\sqrt{\frac{1-\cos x}{1+\cos x}}, x \in(0,1), then :

A

22f(a2)=f(a2)2 \sqrt{2} f \left(\frac{ a }{2}\right)= f ^{\prime}\left(\frac{ a }{2}\right)

B

f(a2)f(a2)=2f\left(\frac{a}{2}\right) f^{\prime}\left(\frac{a}{2}\right)=\sqrt{2}

C

2f(a2)=f(a2)\sqrt{2} f \left(\frac{ a }{2}\right)= f ^{\prime}\left(\frac{ a }{2}\right)

D

f(a2)=2f(a2)f \left(\frac{ a }{2}\right)=\sqrt{2} f ^{\prime}\left(\frac{ a }{2}\right)

Answer

2f(a2)=f(a2)\sqrt{2} f \left(\frac{ a }{2}\right)= f ^{\prime}\left(\frac{ a }{2}\right)

Explanation

Solution

The correct option is (C): 2f(a2)=f(a2)\sqrt{2} f \left(\frac{ a }{2}\right)= f ^{\prime}\left(\frac{ a }{2}\right)