Solveeit Logo

Question

Question: If a discrete random variable X is defined as follows P [ X = x ] = { k ( x + 1 ) 5 x , if x = ...

If a discrete random variable X is defined as follows P [ X = x ] = { k ( x + 1 ) 5 x , if x = 0 , 1 , 2 … … 0 , otherwise

Answer

k = 16/25

Explanation

Solution

We are given the probability mass function (pmf) of a discrete random variable XX as

P[X=x]={k(x+1)5xfor x=0,1,2,,0otherwise.P[X=x] = \begin{cases} k\,(x+1) \, 5^{-x} & \text{for } x = 0,1,2,\ldots, \\ 0 & \text{otherwise.} \end{cases}

For P[X=x]P[X=x] to be a valid pmf, we need

x=0P[X=x]=x=0k(x+1)5x=1.\sum_{x=0}^{\infty} P[X=x] = \sum_{x=0}^{\infty} k\,(x+1) \, 5^{-x} = 1.

Step 1. Factor out kk:

kx=0(x+1)5x=1.k \sum_{x=0}^{\infty} (x+1) \, 5^{-x} = 1.

Step 2. Evaluate the sum

S=x=0(x+1)rx,S = \sum_{x=0}^{\infty} (x+1) \, r^x,

with r=15r = \frac{1}{5}. It is known that

x=0(x+1)rx=1(1r)2for r<1.\sum_{x=0}^{\infty} (x+1)\,r^x = \frac{1}{(1-r)^2} \quad \text{for } |r|<1.

Substitute r=15r=\frac{1}{5}:

S=1(115)2=1(45)2=11625=2516.S = \frac{1}{\left(1-\frac{1}{5}\right)^2} = \frac{1}{\left(\frac{4}{5}\right)^2} = \frac{1}{\frac{16}{25}} = \frac{25}{16}.

Step 3. Now, putting it back into the normalization condition:

k2516=1k=1625.k \cdot \frac{25}{16} = 1 \quad \Longrightarrow \quad k = \frac{16}{25}.