Solveeit Logo

Question

Question: If \[a = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }}\] and \[b = \dfrac{{\sqrt 5 - \sqrt 2 }}...

If a=5+252a = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }} and b=525+2b = \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }} , find the value of a2+ab+b2a2ab+b2\dfrac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}

Explanation

Solution

First we will have to rationalise the denominators of both a and b. Note that a and b are conjugate surds. Therefore find (a+b), (ab)(a + b),{\text{ }}(a - b) and abab. Now write a2+ab+b2a2ab+b2\dfrac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}as (a+b)2ab(ab)2+ab\dfrac{{{{\left( {a + b} \right)}^2} - ab}}{{{{\left( {a - b} \right)}^2} + ab}} and substitute the values of (a+b), (ab)(a + b),{\text{ }}(a - b) and abab, on solving we get our answer.

Complete step by step answer:

Given, a=5+252a = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }} and b=525+2b = \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }}
Therefore, ab=5+252×525+2=1ab = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }} \times \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }} = 1
Now we will have to rationalize the denominators of both a and b first.
For this, we multiply the denominator with its conjugate surd.
a=5+252a = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }}
Multiplying both the numerator and denominator with 5+2\sqrt 5 + \sqrt 2 , we get
a=5+252×5+25+2\Rightarrow a = \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }} \times \dfrac{{\sqrt 5 + \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }}
a=(5+2)2(52)(5+2)\Rightarrow a = \dfrac{{{{\left( {\sqrt 5 + \sqrt 2 } \right)}^2}}}{{\left( {\sqrt 5 - \sqrt 2 } \right)\left( {\sqrt 5 + \sqrt 2 } \right)}}
Using, (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}, we get
a=(5)2+(2)2+2×5×2(5)2(2)2\Rightarrow a = \dfrac{{{{\left( {\sqrt 5 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2} + 2 \times \sqrt 5 \times \sqrt 2 }}{{{{\left( {\sqrt 5 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}
On simplification we get,
a=5+2+21052\Rightarrow a = \dfrac{{5 + 2 + 2\sqrt {10} }}{{5 - 2}}
On addition we get,
a=7+2103\Rightarrow a = \dfrac{{7 + 2\sqrt {10} }}{3}
And b=525+2b = \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }}
Multiplying both the numerator and denominator with 52\sqrt 5 - \sqrt 2 ,
b=525+2×5252\Rightarrow b = \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 + \sqrt 2 }} \times \dfrac{{\sqrt 5 - \sqrt 2 }}{{\sqrt 5 - \sqrt 2 }}
b=(52)2(52)(5+2)\Rightarrow b = \dfrac{{{{\left( {\sqrt 5 - \sqrt 2 } \right)}^2}}}{{\left( {\sqrt 5 - \sqrt 2 } \right)\left( {\sqrt 5 + \sqrt 2 } \right)}}
Using, (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}, we get
b=(5)2+(2)22×5×2(5)2(2)2\Rightarrow b = \dfrac{{{{\left( {\sqrt 5 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2} - 2 \times \sqrt 5 \times \sqrt 2 }}{{{{\left( {\sqrt 5 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}
On simplification we get,
b=5+221052\Rightarrow b = \dfrac{{5 + 2 - 2\sqrt {10} }}{{5 - 2}}
On addition we get,
b=72103\Rightarrow b = \dfrac{{7 - 2\sqrt {10} }}{3}
Now, calculating a+ba + b,
We get,
a+b=7+2103+72103a + b = \dfrac{{7 + 2\sqrt {10} }}{3} + \dfrac{{7 - 2\sqrt {10} }}{3}
On simplification we get,
a+b=7+210+72103\Rightarrow a + b = \dfrac{{7 + 2\sqrt {10} + 7 - 2\sqrt {10} }}{3}
a+b=143\Rightarrow a + b = \dfrac{{14}}{3}
And,
On calculating aba - b,
We get,
ab=7+210372103a - b = \dfrac{{7 + 2\sqrt {10} }}{3} - \dfrac{{7 - 2\sqrt {10} }}{3}
On simplification we get,
ab=7+2107+2103\Rightarrow a - b = \dfrac{{7 + 2\sqrt {10} - 7 + 2\sqrt {10} }}{3}
ab=4103\Rightarrow a - b = \dfrac{{4\sqrt {10} }}{3}
Now we have to find the value of a2+ab+b2a2ab+b2\dfrac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}
Therefore,
a2+ab+b2a2ab+b2\dfrac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}
Add and subtract abab, from numerator and denominator, we get
=a2+2ab+b2aba22ab+b2+ab= \dfrac{{{a^2} + 2ab + {b^2} - ab}}{{{a^2} - 2ab + {b^2} + ab}}
On reframing we get,
=(a+b)2ab(ab)2+ab= \dfrac{{{{\left( {a + b} \right)}^2} - ab}}{{{{\left( {a - b} \right)}^2} + ab}}
On Substituting the values of (a+b), (ab)(a + b),{\text{ }}(a - b) and abab, we get
=(143)21(4103)2+1= \dfrac{{{{\left( {\dfrac{{14}}{3}} \right)}^2} - 1}}{{{{\left( {\dfrac{{4\sqrt {10} }}{3}} \right)}^2} + 1}}
On simplification we get,
=196911609+1= \dfrac{{\dfrac{{196}}{9} - 1}}{{\dfrac{{160}}{9} + 1}}
On taking LCM we get,
=1969160+9= \dfrac{{196 - 9}}{{160 + 9}}
On simplification we get,
=187169= \dfrac{{187}}{{169}}
Therefore, the value of a2+ab+b2a2ab+b2\dfrac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}} is 187169\dfrac{{187}}{{169}}.

Note: To rationalize the denominator of a fraction, we have to multiply both the numerator and the denominator with the conjugate surd of the denominator. For example, to rationalise the denominator of the fraction a+bc+d\dfrac{{a + \sqrt b }}{{c + \sqrt d }} , we will multiply both the numerator and the denominator with cdc - \sqrt d .
a+bc+d=a+bc+d×cdcd=(a+b)(cd)c2d\Rightarrow \dfrac{{a + \sqrt b }}{{c + \sqrt d }} = \dfrac{{a + \sqrt b }}{{c + \sqrt d }} \times \dfrac{{c - \sqrt d }}{{c - \sqrt d }} = \dfrac{{\left( {a + \sqrt b } \right)\left( {c - \sqrt d } \right)}}{{{c^2} - d}} [since (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2} ]