Solveeit Logo

Question

Question: If \(a\) denotes the number of permutations of \(x + 2\) things taken all at a time, \(b\) the numbe...

If aa denotes the number of permutations of x+2x + 2 things taken all at a time, bb the number of permutations of xx things taken 11 at a time and cc the number of permutations of x11x - 11 things taken all at a time such that a=1826mubca = 182\mspace{6mu} bc, then the value of xx is.

A

15

B

12

C

10

D

18

Answer

12

Explanation

Solution

We have a=x+2Px+2=(x+2)6mu!,6mub=xP11=x6mu!(x11)6mu!a =^{x + 2} ⥂ P_{x + 2} = (x + 2) ⥂ \mspace{6mu}!,\mspace{6mu} b =^{x} ⥂ P_{11} = \frac{x\mspace{6mu}!}{(x - 11)\mspace{6mu}!}

and c=x11Px11=(x11)6mu!c =^{x - 11} ⥂ P_{x - 11} = (x - 11)\mspace{6mu}!

Now a=1826mubc(x+2)6mu!=1826mu.6mux6mu!(x11)6mu!(x11)6mu!a = 182\mspace{6mu} bc \Rightarrow (x + 2)\mspace{6mu}! = 182\mspace{6mu}.\mspace{6mu}\frac{x ⥂ \mspace{6mu}!}{(x - 11)\mspace{6mu}!}(x - 11)\mspace{6mu}!

6mu(x+2)!6mu=182x6mu!(x+2)(x+1)=182x=12\Rightarrow \mspace{6mu}(x + 2)!\mspace{6mu} = 182x\mspace{6mu}! \Rightarrow (x + 2)(x + 1) = 182 \Rightarrow x = 12.