Solveeit Logo

Question

Question: If \(a\) denotes the number of permutations of \(x + 2\) things taken all at a time, \(b\) the numbe...

If aa denotes the number of permutations of x+2x + 2 things taken all at a time, bb the number of permutations of xx things being taken 1111 at a time and cc the number of permutations of x11x - 11 things taken all at a time such that a=182bca = 182bc, then the value of xx is
(A) 1515
(B)1212
(C)1010
(D)1818

Explanation

Solution

The total number of permutations of nnthings taken rrat a time is given by, nPr=n!(nr)!{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}. Use this formula to find a,ba,b and cc.

Complete step-by-step answer:
We know that the number of permutations of nn things taken rr at a time is given by, nPr=n!(nr)!{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}
Given, aa denotes the number of permutations of x+2x + 2 things taken all at a time.
a=x+2Px+2=(x+2)!\therefore a = {}^{x + 2}{P_{x + 2}} = \left( {x + 2} \right)! ….. (1)
bb denotes the number of permutations of xx things being taken 1111 at a time.
b=xP11=x!(x11)!\therefore b = {}^x{P_{11}} = \dfrac{{x!}}{{\left( {x - 11} \right)!}} …..(2)
cc denotes the number of permutations of x11x - 11 things taken all at a time.
c=x11Px11=(x11)!\therefore c = {}^{x - 11}{P_{x - 11}} = \left( {x - 11} \right)! ….. (3)
Given: a=182bca = 182bc
(x+2)!=182×x!(x11)!×(x11)!\Rightarrow \left( {x + 2} \right)! = 182 \times \dfrac{{x!}}{{\left( {x - 11} \right)!}} \times \left( {x - 11} \right)! [Using (1),(2) and (3)]
(x+2)!=182x!\Rightarrow \left( {x + 2} \right)! = 182x!
(x+2)(x+1)x!=182x!\Rightarrow \left( {x + 2} \right)\left( {x + 1} \right)x! = 182x! [Using (x+2)!=(x+2)(x+1)x!\left( {x + 2} \right)! = \left( {x + 2} \right)\left( {x + 1} \right)x!]
(x+2)(x+1)=182\Rightarrow \left( {x + 2} \right)\left( {x + 1} \right) = 182
x2+x+2x+2=182\Rightarrow {x^2} + x + 2x + 2 = 182
x2+3x180=0\Rightarrow {x^2} + 3x - 180 = 0 ….. (1)
Now using factorization method to find the roots of equation,
x2+(1512)x180=0\Rightarrow {x^2} + \left( {15 - 12} \right)x - 180 = 0
x2+15x12x180=0\Rightarrow {x^2} + 15x - 12x - 180 = 0
x(x+15)12(x+15)=0\Rightarrow x\left( {x + 15} \right) - 12\left( {x + 15} \right) = 0
(x+15)(x12)=0\Rightarrow \left( {x + 15} \right)\left( {x - 12} \right) = 0
x=15\Rightarrow x = - 15 or x=12x = 12
x=12\therefore x = 12
Hence, option (B) is the correct answer.

Note: The roots of equation (1) can also be find by using the quadratic formula which is given by,
x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
On comparing x2+3x180=0{x^2} + 3x - 180 = 0 with ax2+bx+c=0a{x^2} + bx + c = 0, we get-
a=1,b=3,c=180a = 1,b = 3,c = - 180
x=3±(3)24×1×1802×1\therefore x = \dfrac{{ - 3 \pm \sqrt {{{\left( 3 \right)}^2} - 4 \times 1 \times - 180} }}{{2 \times 1}}
x=3±9+7202\Rightarrow x = \dfrac{{ - 3 \pm \sqrt {9 + 720} }}{2}
x=3±7292\Rightarrow x = \dfrac{{ - 3 \pm \sqrt {729} }}{2}
x=3±272\Rightarrow x = \dfrac{{ - 3 \pm 27}}{2}
x=3+272\Rightarrow x = \dfrac{{ - 3 + 27}}{2} or x=3272x = \dfrac{{ - 3 - 27}}{2}
x=242\Rightarrow x = \dfrac{{24}}{2} or x=302x = \dfrac{{ - 30}}{2}
x=12\Rightarrow x = 12 or x=15x = - 15
x=12\therefore x = 12