Question
Mathematics Question on Differential equations
If a curve y=f(x) passes through the point (1,−1) and satisfies the differential equation, y(1+xy)dx=xdy, then f(−21) is equal to :
A
−52
B
−54
C
52
D
54
Answer
54
Explanation
Solution
xy(1+xy)=dxdy
y=vx
⇒xy=v
dxdy=v+xdxdv
v(1+vx2)=v+xdxdv
v2x2=xdxdv
v2x=dxdv
∫xdx=∫v21dv
2x2=−v1+c
2x2=−yx+c
Put (1,−1)
21=11+c
⇒c=2−1
2x2=−yx−21
We have to find f(−21)
Put x=−21
2(−21)2=y−(−21)−21
81=2y1−21
y=54