Solveeit Logo

Question

Mathematics Question on Differential equations

If a curve y=f(x)y = f(x) passes through the point (1,1)(1, -1) and satisfies the differential equation, y(1+xy)dx=xdyy(1 + xy) dx = x \,dy, then f(12)f \left( - \frac{1}{2} \right) is equal to :

A

25 - \frac{2}{5}

B

45 - \frac{4}{5}

C

25 \frac{2}{5}

D

45 \frac{4}{5}

Answer

45 \frac{4}{5}

Explanation

Solution

yx(1+xy)=dydx\frac{ y }{ x }(1+ xy )=\frac{ dy }{ dx }
y=vxy = vx
yx=v\Rightarrow \frac{ y }{ x }= v
dydx=v+xdvdx\frac{ dy }{ dx }= v + x \frac{ dv }{ dx }
v(1+vx2)=v+xdvdxv\left(1+v x^{2}\right)=v+x \frac{d v}{d x}
v2x2=xdvdxv ^{2} x ^{2}= x \frac{ dv }{ dx }
v2x=dvdxv ^{2} x =\frac{ dv }{ dx }
xdx=1v2dv\int xdx =\int \frac{1}{ v ^{2}} dv
x22=1v+c\frac{x^{2}}{2}=-\frac{1}{v}+c
x22=xy+c\frac{x^{2}}{2}=-\frac{x}{y}+c
Put (1,1)(1,-1)
12=11+c\frac{1}{2}=\frac{1}{1}+ c
c=12\Rightarrow c =\frac{-1}{2}
x22=xy12\frac{x^{2}}{2}=-\frac{x}{y}-\frac{1}{2}
We have to find f(12)f\left(-\frac{1}{2}\right)
Put x=12x =-\frac{1}{2}
(12)22=(12)y12\frac{\left(-\frac{1}{2}\right)^{2}}{2}=\frac{-\left(-\frac{1}{2}\right)}{ y }-\frac{1}{2}
18=12y12\frac{1}{8}=\frac{1}{2 y }-\frac{1}{2}
y=45y =\frac{4}{5}