Solveeit Logo

Question

Question: If a curve \(y = f\left( x \right)\) passes through the point \(\left( {1, - 1} \right)\)and satisfi...

If a curve y=f(x)y = f\left( x \right) passes through the point (1,1)\left( {1, - 1} \right)and satisfies the differential equation, y(1+xy)dx=xdyy\left( {1 + xy} \right)dx = xdy, then f(12)f\left( {\dfrac{{ - 1}}{2}} \right) is equal to:
(A) 25\dfrac{{ - 2}}{5}
(B) 45\dfrac{{ - 4}}{5}
(C) 25\dfrac{2}{5}
(D) 45\dfrac{4}{5}

Explanation

Solution

A first order differential equation is Homogeneous which can be written as: dydx=F(yx)\dfrac{{dy}}{{dx}} = F\left( {\dfrac{y}{x}} \right)The given differential equation is y(1+xy)dx=xdyy\left( {1 + xy} \right)dx = xdy yx(1+xy)=dydx \Rightarrow \dfrac{y}{x}\left( {1 + xy} \right) = \dfrac{{dy}}{{dx}} , which is of the form dydx=F(yx)\dfrac{{dy}}{{dx}} = F\left( {\dfrac{y}{x}} \right). It means the given differential equation is a homogeneous differential equation. The Homogeneous differential equations can be solved by using y=vxy = vx and dydx=v+xdvdx\dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}.Firstly solve the given differential equation and then integrate it. Also find the value of constant of integration with the help of given boundary condition i.e., (1,1)\left( {1, - 1} \right) and get the value of f(12)f\left( {\dfrac{{ - 1}}{2}} \right).

Complete step-by-step answer:
Given differential equation is y(1+xy)dx=xdyy\left( {1 + xy} \right)dx = xdy
On rearranging,
yx(1+xy)=dydx\Rightarrow \dfrac{y}{x}\left( {1 + xy} \right) = \dfrac{{dy}}{{dx}} …. (1)
This differential equation is of the form dydx=F(yx)\dfrac{{dy}}{{dx}} = F\left( {\dfrac{y}{x}} \right). Hence it is a homogeneous differential equation, so it can be solved by assuming y=vxy = vx dydx=v+xdvdx \Rightarrow \dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}.
Now equation (1) becomes,
v(1+vx2)=v+xdvdxv\left( {1 + v{x^2}} \right) = v + x\dfrac{{dv}}{{dx}}
On solving further, we get-
v+v2x2=v+xdvdxv + {v^2}{x^2} = v + x\dfrac{{dv}}{{dx}}
v2x2=xdvdx{v^2}{x^2} = x\dfrac{{dv}}{{dx}}
v2x=dvdx\Rightarrow {v^2}x = \dfrac{{dv}}{{dx}}
xdx=1v2dv\Rightarrow xdx = \dfrac{1}{{{v^2}}}dv
On taking integration both sides,
xdx=1v2dv\Rightarrow \int {xdx} = \int {\dfrac{1}{{{v^2}}}dv}
By using the formula xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} , we get-
x1+11+1=v2+12+1+C\Rightarrow \dfrac{{{x^{1 + 1}}}}{{1 + 1}} = \dfrac{{{v^{ - 2 + 1}}}}{{ - 2 + 1}} + C
\Rightarrow x22=1v+C\dfrac{{{x^2}}}{2} = \dfrac{{ - 1}}{v} + C ….(2)
Where CC is the constant of integration.
We have,
y=vxv=yxy = vx \Rightarrow v = \dfrac{y}{x}
Put the value of v in equation (2),
\Rightarrow x22=xy+C\dfrac{{{x^2}}}{2} = \dfrac{{ - x}}{y} + C ….(3)
The curve passes through (1,1)\left( {1, - 1} \right).So it satisfies the above equation. Put x=1x = 1 and y=1y = - 1 in above equation (3) to find out the value of CC,
122=11+C\dfrac{{{1^2}}}{2} = \dfrac{{ - 1}}{{ - 1}} + C
12=1+C\Rightarrow \dfrac{1}{2} = 1 + C
C=12\Rightarrow C = \dfrac{{ - 1}}{2}
Put the value of CCin equation (3),
x22=xy12\dfrac{{{x^2}}}{2} = \dfrac{{ - x}}{y} - \dfrac{1}{2} ….. (4)
Now, we have to find f(12)f\left( {\dfrac{{ - 1}}{2}} \right).
Therefore, substitute x=12x = \dfrac{{ - 1}}{2} in above equation (4),
(12)22=(12)y12\dfrac{{{{\left( {\dfrac{{ - 1}}{2}} \right)}^2}}}{2} = \dfrac{{ - \left( {\dfrac{{ - 1}}{2}} \right)}}{y} - \dfrac{1}{2}
\Rightarrow 18=12y12\dfrac{1}{8} = \dfrac{1}{{2y}} - \dfrac{1}{2}
\Rightarrow 18+12=12y\dfrac{1}{8} + \dfrac{1}{2} = \dfrac{1}{{2y}}
\Rightarrow 1+48\dfrac{{1 + 4}}{8} =12y = \dfrac{1}{{2y}}
\Rightarrow 58=12y\dfrac{5}{8} = \dfrac{1}{{2y}}
10y=8\Rightarrow 10y = 8
y=45\Rightarrow y = \dfrac{4}{5}

So, the correct answer is “Option D”.

Note: In this question , the curve y=f(x)y = f\left( x \right) passes through the point (1,1)\left( {1, - 1} \right), so it must satisfy the given differential equation. So, we can Put x=1x = 1 and y=1y = - 1 in the equation to find out the value of the constant of integration (C)\left( C \right).Students should remember the integration formulas and definitions of homogeneous differential equations for solving these types of problems.