Question
Question: If \(A = \cos^{2}\theta + \sin^{4}\theta,\) then for all values of θ...
If A=cos2θ+sin4θ, then for all values of θ
A
1≤A≤2
B
13/16≤A≤1
C
3/4≤A≤13/16
D
3/4≤A≤1
Answer
3/4≤A≤1
Explanation
Solution
A=cos2θ+sin4θ ⇒A=cos2θ+sin2θ.sin2θ
⇒ A≤cos2θ+sin2θ, [∵sin2θ≤1]
⇒ A≤1
Again A=cos2θ+sin4θ=(1−sin2θ)+sin4θ
A=(sin2θ−21)2+43≥43
Hence, 3/4≤A≤1.