Solveeit Logo

Question

Question: If \(A = \cos^{2}\theta + \sin^{4}\theta,\) then for all values of θ...

If A=cos2θ+sin4θ,A = \cos^{2}\theta + \sin^{4}\theta, then for all values of θ

A

1A21 \leq A \leq 2

B

13/16A113/16 \leq A \leq 1

C

3/4A13/163/4 \leq A \leq 13/16

D

3/4A13/4 \leq A \leq 1

Answer

3/4A13/4 \leq A \leq 1

Explanation

Solution

A=cos2θ+sin4θA = \cos^{2}\theta + \sin^{4}\thetaA=cos2θ+sin2θ.sin2θA = \cos^{2}\theta + \sin^{2}\theta.\sin^{2}\theta

Acos2θ+sin2θA \leq \cos^{2}\theta + \sin^{2}\theta, [sin2θ1]\lbrack\because\sin^{2}\theta \leq 1\rbrack

A1A \leq 1

Again A=cos2θ+sin4θ=(1sin2θ)+sin4θA = \cos^{2}\theta + \sin^{4}\theta = (1 - \sin^{2}\theta) + \sin^{4}\theta

A=(sin2θ12)2+3434A = \left( \sin^{2}\theta - \frac{1}{2} \right)^{2} + \frac{3}{4} \geq \frac{3}{4}

Hence, 3/4A13/4 \leq A \leq 1.