Question
Question: If a = cos \(\frac{2\pi}{7}\) + i sin \(\frac{2\pi}{7}\) and p = a + a<sup>2</sup> + a<sup>4</sup>, ...
If a = cos 72π + i sin 72π and p = a + a2 + a4, q = a3 + a5 + a6 then the equation whose roots are p and q –
A
x2 + x + 4 = 0
B
x2 + x + 2 = 0
C
x2 + x – 2 = 0
D
x2 + x – 4 = 0
Answer
x2 + x + 2 = 0
Explanation
Solution
Sol. a7 = cos 2p + i sin 2p = 1
Ž sum = a + a 2 + a 3 + a 4 + a 5 + a6
= 1−αα(1−α6)
s = 1−αα−α7= 1−αα−1 = –1
Product of roots
pq = (a 4 + a 6 + a 7) + (a 5 + a 7 + a 8) + (a 7 + a 9 + a10)
= (a 4 + a 6 + 1) + (a 5 + 1 + a) + (1 + a 2 + a 3)
= 3 + (a + a2 + …. + a6) = 3 + (–1)
= 3 – 1 = 2
Equation x2 + x + 2 = 0.