Solveeit Logo

Question

Question: If a = cos a + i sin a, b = cos b + i sin b, c = cos g + i sin g and \(\frac{a}{b}\)+\(\frac{b}{c}\...

If a = cos a + i sin a, b = cos b + i sin b,

c = cos g + i sin g and ab\frac{a}{b}+bc\frac{b}{c}+ca\frac{c}{a}= 1, then

cos (a – b) + cos (b – g) + cos (g – a) =

A

32\frac{3}{2}

B

32\frac{3}{2}

C

0

D

1

Answer

1

Explanation

Solution

Sol. ab+bc+ca\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 1

Ž cisαcisβ\frac{cis\alpha}{cis\beta}+cisβcisγ\frac{cis\beta}{cis\gamma}+cisγcisα\frac{cis\gamma}{cis\alpha}= 1,

Where cis q represents cos q + i sin q

cis (a – b) + cis (b – g) + cis (g – a) = 1

Equation real parts of both sides

Ž cos (a – b) + cos (b – g) + cos (g – a) = 1

Hence (4) is correct answer.