Question
Question: If a = cos a + i sin a, b = cos b + i sin b, c = cos g + i sin g and \(\frac{a}{b}\)+\(\frac{b}{c}\...
If a = cos a + i sin a, b = cos b + i sin b,
c = cos g + i sin g and ba+cb+ac= 1, then
cos (a – b) + cos (b – g) + cos (g – a) =
A
23
B
–23
C
0
D
1
Answer
1
Explanation
Solution
Sol. ba+cb+ac = 1
Ž cisβcisα+cisγcisβ+cisαcisγ= 1,
Where cis q represents cos q + i sin q
cis (a – b) + cis (b – g) + cis (g – a) = 1
Equation real parts of both sides
Ž cos (a – b) + cos (b – g) + cos (g – a) = 1
Hence (4) is correct answer.