Solveeit Logo

Question

Question: If a = cos 2a + i sin 2a, b = cos 2b + i sin 2b, c = cos 2g + i sin 2g and d = cos 2d + i sin 2d, t...

If a = cos 2a + i sin 2a, b = cos 2b + i sin 2b,

c = cos 2g + i sin 2g and d = cos 2d + i sin 2d, then abcd+1abcd\sqrt{abcd} + \frac{1}{\sqrt{abcd}}=

A

2\sqrt{2}cos (a + b + g + d)

B

2 cos (a + b + g + d)

C

cos (a + b + g + d)

D

None of these

Answer

2 cos (a + b + g + d)

Explanation

Solution

Sol. We have,

abcd = cos(2a + 2b + 2g + 2d) + i sin (2a + 2b + 2g + 2d)

\ abcd\sqrt{abcd}

= [cos (2a + 2b + 2g + 2d) + i sin (2a + 2b + 2g + 2d)]1/2

or abcd\sqrt{abcd}= cos (a + b + g + d) + i sin (a + b + g + d)] … (1)

[DeMoiver’s Theorem]

\ 1abcd\frac{1}{\sqrt{abcd}} = cos (a + b + g + d) – i sin (a + b + g + d)… (2)

Adding (1) and (2), we obtain

abcd\sqrt{abcd}+1abcd\frac{1}{\sqrt{abcd}} = 2 cos (a + b + g + d)