Question
Question: If a = cos 2a + i sin 2a, b = cos 2b + i sin 2b, c = cos 2g + i sin 2g and d = cos 2d + i sin 2d, t...
If a = cos 2a + i sin 2a, b = cos 2b + i sin 2b,
c = cos 2g + i sin 2g and d = cos 2d + i sin 2d, then abcd+abcd1=
A
2cos (a + b + g + d)
B
2 cos (a + b + g + d)
C
cos (a + b + g + d)
D
None of these
Answer
2 cos (a + b + g + d)
Explanation
Solution
Sol. We have,
abcd = cos(2a + 2b + 2g + 2d) + i sin (2a + 2b + 2g + 2d)
\ abcd
= [cos (2a + 2b + 2g + 2d) + i sin (2a + 2b + 2g + 2d)]1/2
or abcd= cos (a + b + g + d) + i sin (a + b + g + d)] … (1)
[DeMoiver’s Theorem]
\ abcd1 = cos (a + b + g + d) – i sin (a + b + g + d)… (2)
Adding (1) and (2), we obtain
abcd+abcd1 = 2 cos (a + b + g + d)