Question
Question: If \(A = \cos {20^0}\cos {40^0}\cos {60^0}\cos {80^0}\) \(B = \cos {6^0}\cos {42^0}\cos {66^0...
If A=cos200cos400cos600cos800
B=cos60cos420cos660cos780
C=cos360cos720cos1080cos1440
then which of the following conditions is true?
A. A > B > C
B. B > C > A
C. C > A > B
D. A = B = C
Solution
Hint: The main approach we use in this question is that we will take the expressions one by one and simplify them. For simplifying each expression we will just multiply and divide by whatever factor we might be needing for the expression to get converted into property of 2sinAcosA=sin2A , 2cosAcosB=cos(A+B)+cos(A−B) , or any other property related to trigonometry and then we will just compare the simplified numerical value to arrive at the answer.
Complete step-by-step answer:
It is given that,
A=cos200cos400cos600cos800
On Multiplying and divide by 2sin200 in numerator and denominator we get,
A=2sin200(2sin200cos200)cos400cos600cos800
Using the property, 2sinAcosA=sin2A
A=2sin200sin400cos400cos600cos800
Now, on multiplying and divide by 2 we get,
A=4sin200(2sin400cos400)cos600cos800
Again, using the property, 2sinAcosA=sin2A
A=4sin200sin800cos600cos800=4sin200sin800cos800cos600
Now, on multiplying and divide by 2 we get,
A=8sin2002sin800cos800cos600
Again, using the property, 2sinAcosA=sin2A
A=8sin2002sin800cos800cos600=8sin200sin1600cos600
On substituting the value of cos600=21
A=16sin200sin1600=16sin200sin(1800−200)
We know that, sin(1800−A)=sinA
A=16sin200sin200=161
∴A=161
Now, B=cos60cos420cos660cos780
On Multiplying and divide by 4 in numerator and denominator and also split the 4 in numerator as 2×2 we get,
B=4(2cos60cos660)(2cos420cos780)
Using the property, 2cosAcosB=cos(A+B)+cos(A−B)
B=4(cos(60+660)+cos(60−660))(cos(420+780)+cos(420−780))
B=4(cos720+cos(−600))(cos1200+cos(−360))
We know that, cos(−A)=cos(A)
B=4(cos720+cos600)(cos1200+cos360)
On substituting the value of cos600=21,cos720=4(5−1),cos360=4(5+1),cos1200=−(21)
B=4((45−1)+21)((45+1)−21)=64(5+1)(5−1)
Using (a+b)(a−b)=a2−b2
B=64(5)2−12=645−1=644=161
∴B=161
Now, C=cos360cos720cos1080cos1440
Using the property, cos(1800−A)=cosA
C=cos360cos720cos(1800−720)cos(1800−360)
C=cos360cos720cos720cos360
C=(cos360cos720)2
On substituting, cos360=45+1,cos720=45−1
C=((45+1)×(45−1))2
Using the property, (a+b)(a−b)=a2−b2
C=(16(5)2−12)2=(164)2=(41)2=161
∴C=161
So, now we get to know that A=B=C=161
Hence, we can say that A=B=C
∴ Option D. A=B=C is our correct answer.
Note: For such types of questions, we just have to simplify the expressions and compare them. For this we have to use the following properties,
2sinAcosA=sin2A
sin(1800−A)=sinA
cos(1800−A)=cosA
2cosAcosB=cos(A+B)+cos(A−B)
cos600=21,cos720=4(5−1),cos360=4(5+1),cos1200=−(21)
cos(−A)=cos(A)
The following properties can simplify the expression very well.