Solveeit Logo

Question

Question: If \(A = \cos {20^0}\cos {40^0}\cos {60^0}\cos {80^0}\) \(B = \cos {6^0}\cos {42^0}\cos {66^0...

If A=cos200cos400cos600cos800A = \cos {20^0}\cos {40^0}\cos {60^0}\cos {80^0}
B=cos60cos420cos660cos780B = \cos {6^0}\cos {42^0}\cos {66^0}\cos {78^0}
C=cos360cos720cos1080cos1440C = \cos {36^0}\cos {72^0}\cos {108^0}\cos {144^0}
then which of the following conditions is true?
A. A > B > C
B. B > C > A
C. C > A > B
D. A = B = C

Explanation

Solution

Hint: The main approach we use in this question is that we will take the expressions one by one and simplify them. For simplifying each expression we will just multiply and divide by whatever factor we might be needing for the expression to get converted into property of 2sinAcosA=sin2A2\sin A\cos A = \sin 2A , 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos (A + B) + \cos (A - B) , or any other property related to trigonometry and then we will just compare the simplified numerical value to arrive at the answer.

Complete step-by-step answer:
It is given that,
A=cos200cos400cos600cos800A = \cos {20^0}\cos {40^0}\cos {60^0}\cos {80^0}
On Multiplying and divide by 2sin2002\sin {20^0} in numerator and denominator we get,
A=(2sin200cos200)cos400cos600cos8002sin200A = \dfrac{{(2\sin {{20}^0}\cos {{20}^0})\cos {{40}^0}\cos {{60}^0}\cos {{80}^0}}}{{2\sin {{20}^0}}}
Using the property, 2sinAcosA=sin2A2\sin A\cos A = \sin 2A
A=sin400cos400cos600cos8002sin200A = \dfrac{{\sin {{40}^0}\cos {{40}^0}\cos {{60}^0}\cos {{80}^0}}}{{2\sin {{20}^0}}}
Now, on multiplying and divide by 2 we get,
A=(2sin400cos400)cos600cos8004sin200A = \dfrac{{(2\sin {{40}^0}\cos {{40}^0})\cos {{60}^0}\cos {{80}^0}}}{{4\sin {{20}^0}}}
Again, using the property, 2sinAcosA=sin2A2\sin A\cos A = \sin 2A
A=sin800cos600cos8004sin200=sin800cos800cos6004sin200A = \dfrac{{\sin {{80}^0}\cos {{60}^0}\cos {{80}^0}}}{{4\sin {{20}^0}}} = \dfrac{{\sin {{80}^0}\cos {{80}^0}\cos {{60}^0}}}{{4\sin {{20}^0}}}
Now, on multiplying and divide by 2 we get,
A=2sin800cos800cos6008sin200A = \dfrac{{2\sin {{80}^0}\cos {{80}^0}\cos {{60}^0}}}{{8\sin {{20}^0}}}
Again, using the property, 2sinAcosA=sin2A2\sin A\cos A = \sin 2A
A=2sin800cos800cos6008sin200=sin1600cos6008sin200A = \dfrac{{2\sin {{80}^0}\cos {{80}^0}\cos {{60}^0}}}{{8\sin {{20}^0}}} = \dfrac{{\sin {{160}^0}\cos {{60}^0}}}{{8\sin {{20}^0}}}
On substituting the value of cos600=12\cos {60^0} = \dfrac{1}{2}
A=sin160016sin200=sin(1800200)16sin200A = \dfrac{{\sin {{160}^0}}}{{16\sin {{20}^0}}} = \dfrac{{\sin ({{180}^0} - {{20}^0})}}{{16\sin {{20}^0}}}
We know that, sin(1800A)=sinA\sin ({180^0} - A) = \sin A
A=sin20016sin200=116A = \dfrac{{\sin {{20}^0}}}{{16\sin {{20}^0}}} = \dfrac{1}{{16}}
A=116\therefore A = \dfrac{1}{{16}}

Now, B=cos60cos420cos660cos780B = \cos {6^0}\cos {42^0}\cos {66^0}\cos {78^0}
On Multiplying and divide by 44 in numerator and denominator and also split the 4 in numerator as 2×22 \times 2 we get,
B=(2cos60cos660)(2cos420cos780)4B = \dfrac{{(2\cos {6^0}\cos {{66}^0})(2\cos {{42}^0}\cos {{78}^0})}}{4}
Using the property, 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos (A + B) + \cos (A - B)
B=(cos(60+660)+cos(60660))(cos(420+780)+cos(420780))4B = \dfrac{{(\cos ({6^0} + {{66}^0}) + \cos ({6^0} - {{66}^0}))(\cos ({{42}^0} + {{78}^0}) + \cos ({{42}^0} - {{78}^0}))}}{4}
B=(cos720+cos(600))(cos1200+cos(360))4B = \dfrac{{(\cos {{72}^0} + \cos ( - {{60}^0}))(\cos {{120}^0} + \cos ( - {{36}^0}))}}{4}
We know that, cos(A)=cos(A)\cos ( - A) = \cos (A)
B=(cos720+cos600)(cos1200+cos360)4B = \dfrac{{(\cos {{72}^0} + \cos {{60}^0})(\cos {{120}^0} + \cos {{36}^0})}}{4}
On substituting the value of cos600=12,cos720=(51)4,cos360=(5+1)4,cos1200=(12)\cos {60^0} = \dfrac{1}{2},\cos {72^0} = \dfrac{{\left( {\sqrt 5 - 1} \right)}}{4},\cos {36^0} = \dfrac{{\left( {\sqrt 5 + 1} \right)}}{4},\cos {120^0} = - \left( {\dfrac{1}{2}} \right)
B=((514)+12)((5+14)12)4=(5+1)(51)64B = \dfrac{{\left( {\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right) + \dfrac{1}{2}} \right)\left( {\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right) - \dfrac{1}{2}} \right)}}{4} = \dfrac{{\left( {\sqrt 5 + 1} \right)\left( {\sqrt 5 - 1} \right)}}{{64}}
Using (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}
B=(5)21264=5164=464=116B = \dfrac{{{{\left( {\sqrt 5 } \right)}^2} - {1^2}}}{{64}} = \dfrac{{5 - 1}}{{64}} = \dfrac{4}{{64}} = \dfrac{1}{{16}}
B=116\therefore B = \dfrac{1}{{16}}

Now, C=cos360cos720cos1080cos1440C = \cos {36^0}\cos {72^0}\cos {108^0}\cos {144^0}
Using the property, cos(1800A)=cosA\cos ({180^0} - A) = \cos A
C=cos360cos720cos(1800720)cos(1800360)C = \cos {36^0}\cos {72^0}\cos ({180^0} - {72^0})\cos ({180^0} - {36^0})
C=cos360cos720cos720cos360C = \cos {36^0}\cos {72^0}\cos {72^0}\cos {36^0}
C=(cos360cos720)2C = {\left( {\cos {{36}^0}\cos {{72}^0}} \right)^2}
On substituting, cos360=5+14,cos720=514\cos {36^0} = \dfrac{{\sqrt 5 + 1}}{4},\cos {72^0} = \dfrac{{\sqrt 5 - 1}}{4}
C=((5+14)×(514))2C = {\left( {\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right) \times \left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)} \right)^2}
Using the property, (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}
C=((5)21216)2=(416)2=(14)2=116C = {\left( {\dfrac{{{{\left( {\sqrt 5 } \right)}^2} - {1^2}}}{{16}}} \right)^2} = {\left( {\dfrac{4}{{16}}} \right)^2} = {\left( {\dfrac{1}{4}} \right)^2} = \dfrac{1}{{16}}
C=116\therefore C = \dfrac{1}{{16}}
So, now we get to know that A=B=C=116A = B = C = \dfrac{1}{{16}}
Hence, we can say that A=B=CA = B = C
\therefore Option D. A=B=CA = B = C is our correct answer.

Note: For such types of questions, we just have to simplify the expressions and compare them. For this we have to use the following properties,
2sinAcosA=sin2A2\sin A\cos A = \sin 2A
sin(1800A)=sinA\sin ({180^0} - A) = \sin A
cos(1800A)=cosA\cos ({180^0} - A) = \cos A
2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos (A + B) + \cos (A - B)
cos600=12,cos720=(51)4,cos360=(5+1)4,cos1200=(12)\cos {60^0} = \dfrac{1}{2},\cos {72^0} = \dfrac{{\left( {\sqrt 5 - 1} \right)}}{4},\cos {36^0} = \dfrac{{\left( {\sqrt 5 + 1} \right)}}{4},\cos {120^0} = - \left( {\dfrac{1}{2}} \right)
cos(A)=cos(A)\cos ( - A) = \cos (A)
The following properties can simplify the expression very well.