Solveeit Logo

Question

Question: If a complex equation is given by \[{{\left( \sqrt{3}+i \right)}^{100}}={{2}^{99}}\left( a+ib \right...

If a complex equation is given by (3+i)100=299(a+ib){{\left( \sqrt{3}+i \right)}^{100}}={{2}^{99}}\left( a+ib \right), then show that a2+b2=4{{a}^{2}}+{{b}^{2}}=4.

Explanation

Solution

Hint: In order to solve this question, we should know about a few trigonometric ratios like cosπ6=32,sinπ6=12,cos2π3=12,sin2π3=32\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2},\sin \dfrac{\pi }{6}=\dfrac{1}{2},\cos \dfrac{2\pi }{3}=\dfrac{-1}{2},\sin \dfrac{2\pi }{3}=\dfrac{\sqrt{3}}{2}. Also, we need to remember that (cosθ+isinθ)=eiθ\left( \cos \theta +i\sin \theta \right)={{e}^{i\theta }} and x+iy=x2+y2\left| x+iy \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}. By using this, we can prove equality.

Complete step-by-step answer:

In this question, we have been given equality that is (3+i)100=299(a+ib){{\left( \sqrt{3}+i \right)}^{100}}={{2}^{99}}\left( a+ib \right) and we have been asked to prove that a2+b2=4{{a}^{2}}+{{b}^{2}}=4.
So, to solve this question, we should know that cosπ6=32 and sinπ6=12\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}\text{ and }\sin \dfrac{\pi }{6}=\dfrac{1}{2}.
So, to prove the equality a2+b2=4{{a}^{2}}+{{b}^{2}}=4, we will first consider (3+i)100=299(a+ib){{\left( \sqrt{3}+i \right)}^{100}}={{2}^{99}}\left( a+ib \right). So, we will first multiply and divide (3+i)100{{\left( \sqrt{3}+i \right)}^{100}} by 2100{{2}^{100}}. So, we get,
2100(32+i2)100=299(a+ib){{2}^{100}}{{\left( \dfrac{\sqrt{3}}{2}+\dfrac{i}{2} \right)}^{100}}={{2}^{99}}\left( a+ib \right)
Now, we know that 32=cosπ6 and 12=sinπ6\dfrac{\sqrt{3}}{2}=\cos \dfrac{\pi }{6}\text{ and }\dfrac{1}{2}=\sin \dfrac{\pi }{6}.
So, we get,
2100[cosπ6+isinπ6]100=299(a+ib){{2}^{100}}{{\left[ \cos \dfrac{\pi }{6}+i\sin \dfrac{\pi }{6} \right]}^{100}}={{2}^{99}}\left( a+ib \right)
Now, we know that cosθ+isinθ=eiθ\cos \theta +i\sin \theta ={{e}^{i\theta }}. So, we can write cosπ6+isinπ6=eiπ6\cos \dfrac{\pi }{6}+i\sin \dfrac{\pi }{6}={{e}^{i\dfrac{\pi }{6}}}. So, we get,
2100(eiπ6)100=299(a+ib){{2}^{100}}{{\left( {{e}^{i\dfrac{\pi }{6}}} \right)}^{100}}={{2}^{99}}\left( a+ib \right)
2100(ei100π6)=299(a+ib){{2}^{100}}\left( {{e}^{i100\dfrac{\pi }{6}}} \right)={{2}^{99}}\left( a+ib \right)
2100(ei50π3)=299(a+ib){{2}^{100}}\left( {{e}^{i50\dfrac{\pi }{3}}} \right)={{2}^{99}}\left( a+ib \right)
Now, we know that 50π3\dfrac{50\pi }{3} can be written as 16π+2π316\pi +\dfrac{2\pi }{3}. So, we get,
2100(ei(16π+2π3))=299(a+ib){{2}^{100}}\left( {{e}^{i\left( 16\pi +\dfrac{2\pi }{3} \right)}} \right)={{2}^{99}}\left( a+ib \right)
And we know that am×an=am+n{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}. So, we can write ei(16π+2π3){{e}^{i\left( 16\pi +\dfrac{2\pi }{3} \right)}} as (ei16π×ei2π3)\left( {{e}^{i16\pi }}\times {{e}^{i\dfrac{2\pi }{3}}} \right). Therefore, we get,
2100(ei16π)(ei2π3)=299(a+ib){{2}^{100}}\left( {{e}^{i16\pi }} \right)\left( {{e}^{i\dfrac{2\pi }{3}}} \right)={{2}^{99}}\left( a+ib \right)
Now, we know that eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta . So, we can write ei16π=cos16π+isin16π, ei2π3=cos2π3+isin2π3{{e}^{i16\pi }}=\cos 16\pi +i\sin 16\pi ,\text{ }{{e}^{i\dfrac{2\pi }{3}}}=\cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3}
Therefore, we get,
2100[cos16π+isin16π][cos2π3+isin2π3]=299(a+ib){{2}^{100}}\left[ \cos 16\pi +i\sin 16\pi \right]\left[ \cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3} \right]={{2}^{99}}\left( a+ib \right)
Now, we know that cos2nπ=1 and sin2nπ=0\cos 2n\pi =1\text{ and }\sin 2n\pi =0. We can write cos16π=cos(2×8π)=1 and sin16π=sin(2×8π)=0\cos 16\pi =\cos \left( 2\times 8\pi \right)=1\text{ and }\sin 16\pi =\sin \left( 2\times 8\pi \right)=0. Also, we know that cos2π3=12 and sin2π3=32\cos \dfrac{2\pi }{3}=\dfrac{-1}{2}\text{ and }\sin \dfrac{2\pi }{3}=\dfrac{\sqrt{3}}{2}. So, we get,
2100(1+0i)[12+32i]=299(a+ib){{2}^{100}}\left( 1+0i \right)\left[ \dfrac{-1}{2}+\dfrac{\sqrt{3}}{2}i \right]={{2}^{99}}\left( a+ib \right)
2100(1+3i2)=299(a+ib){{2}^{100}}\left( \dfrac{-1+\sqrt{3}i}{2} \right)={{2}^{99}}\left( a+ib \right)
(1+3i)1=299(a+ib)22100\dfrac{\left( -1+\sqrt{3}i \right)}{1}=\dfrac{{{2}^{99}}\left( a+ib \right)2}{{{2}^{100}}}
1+3i=a+ib-1+\sqrt{3}i=a+ib
On comparing both the sides, we can say a = – 1 and b=3b=\sqrt{3}. Now, we have to show that a2+b2=4{{a}^{2}}+{{b}^{2}}=4. For that, we will put the value of a and b in a2+b2=4{{a}^{2}}+{{b}^{2}}=4, we get,
(1)2+(3)2=4{{\left( -1 \right)}^{2}}+{{\left( \sqrt{3} \right)}^{2}}=4
1+3=41+3=4
4=44=4
LHS = RHS
Hence proved

Note: While solving this question, we need to remember that cos2π3 and sin2π3\cos \dfrac{2\pi }{3}\text{ and }\sin \dfrac{2\pi }{3} are calculated by the property of cos(180θ)=cosθ and sin(180θ)=sinθ\cos \left( 180-\theta \right)=-\cos \theta \text{ and }\sin \left( 180-\theta \right)=\sin \theta where θ=π3\theta =\dfrac{\pi }{3} because 2π3=180π3\dfrac{2\pi }{3}=180-\dfrac{\pi }{3} and therefore we get cos2π3=12 and sin2π3=32\cos \dfrac{2\pi }{3}=\dfrac{-1}{2}\text{ and }\sin \dfrac{2\pi }{3}=\dfrac{\sqrt{3}}{2}. Also, we have to remember that eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta . By these concepts, we can solve the question. The important step here is the splitting of the angle 50π3 as 16π+2π3\dfrac{50\pi }{3}\text{ as }16\pi +\dfrac{2\pi }{3}. Whichever angle we get in the power, we must try to represent it as the sum or difference of 2nπ±θ2n\pi \pm \theta . This will make it easier to solve this type of question.