Solveeit Logo

Question

Question: If a circle passes through the point (0, 0), (a, 0), (0, b), then its centre is....

If a circle passes through the point (0, 0), (a, 0), (0, b), then its centre is.

A

(a,b)( a , b )

B

(b,a)( b , a )

C

(a2,b2)\left( \frac { a } { 2 } , \frac { b } { 2 } \right)

D

(b2,a2)\left( \frac { b } { 2 } , - \frac { a } { 2 } \right)

Answer

(a2,b2)\left( \frac { a } { 2 } , \frac { b } { 2 } \right)

Explanation

Solution

Let the equation of circle be

x2+y2+2gx+2fy+c=0x ^ { 2 } + y ^ { 2 } + 2 g x + 2 f y + c = 0. Now on passing through the points, we get three equations.

c=0c = 0 ….(i)

a2+2ga+c=0a ^ { 2 } + 2 g a + c = 0 ….(ii)

b2+2fb+c=0b ^ { 2 } + 2 f b + c = 0 ….(iii)

On solving them, we get

g=a2,f=b2g = - \frac { a } { 2 } , f = - \frac { b } { 2 }

Hence the centre is (a2,b2)\left( \frac { a } { 2 } , \frac { b } { 2 } \right).