Solveeit Logo

Question

Question: If a circle of radius R passes through the origin O and intersects the coordinate axes at \[A\] and ...

If a circle of radius R passes through the origin O and intersects the coordinate axes at AA and BB , then find the locus of the foot of perpendicular from OO on ABAB .
(A) (x2+y2)2=4Rx2y2{\left( {{x^2} + {y^2}} \right)^2} = 4R{x^2}{y^2}
(B) (x2+y2)(x+y)=R2xy\left( {{x^2} + {y^2}} \right)\left( {x + y} \right) = {R^2}xy
(C) (x2+y2)3=4R2x2y2{\left( {{x^2} + {y^2}} \right)^3} = 4{R^2}{x^2}{y^2}
(D) (x2+y2)2=4R2x2y2{\left( {{x^2} + {y^2}} \right)^2} = 4{R^2}{x^2}{y^2}

Explanation

Solution

We will first find the slope of the foot perpendicular from OO on ABAB . As we know that the product of slopes of two perpendicular lines is 1 - 1 , using this we will find the slope of ABAB and then the equation of line ABAB . Then we will find the coordinates of AA and BB . At last, we will find the length of ABAB and then equate it to the diameter of the circle to find the locus.

Complete step-by-step solution:

Let the foot of perpendicular from OO on ABAB be P(h,k)P(h,k) .
As AA lies on the x-axis, so the y coordinate of AA will be zero. Similarly, BB lies on the y-axis, so the x coordinate of BB will be zero.
Slope of OP$$$$ = \dfrac{{k - 0}}{{h - 0}}
Slope of OP=kh\therefore {\text{Slope of OP}} = \dfrac{k}{h}
As OPABOP \bot AB ,
Slope of OP×Slope of AB=1\Rightarrow {\text{Slope of OP}} \times {\text{Slope of AB}} = - 1
On solving, we get
kh×Slope of AB=1\Rightarrow \dfrac{k}{h} \times {\text{Slope of AB}} = - 1
Slope of AB=hk\therefore {\text{Slope of AB}} = - \dfrac{h}{k}
We know, equation of a line is given by
yy1=y2y1x2x1(xx1)y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}(x - {x_1})
Hence, equation of ABAB is
yk=hk(xh)y - k = - \dfrac{h}{k}(x - h)
Putting x=0x = 0 ,
yk=h2ky - k = \dfrac{{{h^2}}}{k}
On rearranging,
y=k2+h2k\Rightarrow y = \dfrac{{{k^2} + {h^2}}}{k}
Now, putting y=0y = 0 ,
k=hk(xh)- k = - \dfrac{h}{k}\left( {x - h} \right)
On solving,
k2h=(xh)\Rightarrow \dfrac{{{k^2}}}{h} = \left( {x - h} \right)
On rearranging,
x=k2+h2h\Rightarrow x = \dfrac{{{k^2} + {h^2}}}{h}
Now, we can write the coordinates of AA and BB as
A(k2+h2h,0)A\left( {\dfrac{{{k^2} + {h^2}}}{h},0} \right) and B(0,k2+h2k)B\left( {0,\dfrac{{{k^2} + {h^2}}}{k}} \right)
Distance between two points (x1,y1)({x_1},{y_1}) and (x2,y2)({x_2},{y_2}) is given by (x1x2)2+(y1y2)2\sqrt {{{({x_1} - {x_2})}^2} + {{({y_1} - {y_2})}^2}} .
AB=(k2+h2h0)2+(0k2+h2k)2\therefore AB = \sqrt {{{\left( {\dfrac{{{k^2} + {h^2}}}{h} - 0} \right)}^2} + {{\left( {0 - \dfrac{{{k^2} + {h^2}}}{k}} \right)}^2}}
AB=2R\because AB = 2R
(k2+h2h0)2+(0k2+h2k)2=2R\Rightarrow \sqrt {{{\left( {\dfrac{{{k^2} + {h^2}}}{h} - 0} \right)}^2} + {{\left( {0 - \dfrac{{{k^2} + {h^2}}}{k}} \right)}^2}} = 2R
Squaring both sides
(k2+h2h)2+(k2+h2k)2=4R2\Rightarrow {\left( {\dfrac{{{k^2} + {h^2}}}{h}} \right)^2} + {\left( {\dfrac{{{k^2} + {h^2}}}{k}} \right)^2} = 4{R^2}
On solving,
(k2+h2)2h2+(k2+h2)2k2=4R2\Rightarrow \dfrac{{{{\left( {{k^2} + {h^2}} \right)}^2}}}{{{h^2}}} + \dfrac{{{{\left( {{k^2} + {h^2}} \right)}^2}}}{{{k^2}}} = 4{R^2}
Taking L.C.M.
k2(k2+h2)2+h2(k2+h2)2k2h2=4R2\Rightarrow \dfrac{{{k^2}{{\left( {{k^2} + {h^2}} \right)}^2} + {h^2}{{\left( {{k^2} + {h^2}} \right)}^2}}}{{{k^2}{h^2}}} = 4{R^2}
Taking k2h2{k^2}{h^2} to R.H.S.
k2(k2+h2)2+h2(k2+h2)2=4R2k2h2\Rightarrow {k^2}{\left( {{k^2} + {h^2}} \right)^2} + {h^2}{\left( {{k^2} + {h^2}} \right)^2} = 4{R^2}{k^2}{h^2}
Taking (k2+h2)2{\left( {{k^2} + {h^2}} \right)^2} common from L.H.S.
(k2+h2)2(k2+h2)=4R2k2h2\Rightarrow {\left( {{k^2} + {h^2}} \right)^2}\left( {{k^2} + {h^2}} \right) = 4{R^2}{k^2}{h^2}
(k2+h2)3=4R2k2h2\Rightarrow {\left( {{k^2} + {h^2}} \right)^3} = 4{R^2}{k^2}{h^2}
Now, to find the locus we will replace hh with xx and kk with yy and rearrange,
(x2+y2)3=4x2y2R2\Rightarrow {\left( {{x^2} + {y^2}} \right)^3} = 4{x^2}{y^2}{R^2}
Therefore, the locus of the foot of perpendicular from OO on ABAB is (x2+y2)3=4x2y2R2{\left( {{x^2} + {y^2}} \right)^3} = 4{x^2}{y^2}{R^2} .
Hence, option (C) is correct.

Note: Centre of the circle and the foot of the perpendicular on the line ABAB are two distinct points. One might get confused that the foot of the perpendicular is the centre of the circle and also AA lies on the x-axis, so the y coordinate of AA will be zero. Similarly, BB lies on the y-axis, so the x coordinate of BB will be zero.