Solveeit Logo

Question

Mathematics Question on Conic sections

If a circle CC passing through the point (4,0)(4,0) touches the circle x2+y2+4x6y=12x^2 + y^2 + 4x - 6y = 12 externally at the point (1,1)(1, -1), then the radius of CC is :

A

57\sqrt{57}

B

44

C

252 \sqrt{5}

D

55

Answer

55

Explanation

Solution

x2+y2+4x6y12=0x^2 + y^2 + 4x - 6y - 12 = 0

Equation of tangent at (1,1)(1, -1)
xy+2(x+1)3(y1)12=0x - y + 2(x + 1) - 3(y - 1) - 12 = 0
3x4y7=03x - 4y - 7 = 0
\therefore Equation of circle is
(x2+y2+4x6y12)+λ(3x4y7)=0(x^2 + y^2 + 4x - 6y - 12) + \lambda (3x - 4y - 7) = 0
It passes through (4,0)(4, 0) :
(16+1612)+λ(127)=0(16 + 16 - 12) + \lambda(12 - 7) = 0
  20+λ(5)=0\Rightarrow \; 20 + \lambda (5) = 0
  λ=4\Rightarrow \; \lambda = - 4
  (x2+y2+4x6y12)4(3x4y7)=0\therefore \; (x^2 + y^2 + 4x - 6y - 12) - 4(3x - 4y - 7) = 0
or x2+y28x+10y+16=0x^2 + y^2 - 8x + 10y + 16 = 0
Radius = 16+2516=5\sqrt{16 + 25 - 16 } = 5