Solveeit Logo

Question

Question: If a chord of a rectangular hyperbola, parallel to its conjugate axis subtends angles θ<sub>1</sub> ...

If a chord of a rectangular hyperbola, parallel to its conjugate axis subtends angles θ1 and θ2 at its vertices, then

A

θ1 + θ2 = π2\frac{\pi}{2}

B

θ1 + θ2 = π

C

θ1 + θ2 = 3π4\frac{3\pi}{4}

D

None of these

Answer

θ1 + θ2 = π

Explanation

Solution

Let the hyperbola be x2 – y2 = a2 and the chord be x = k. It meet the curve at (k,k2a2)(k,\sqrt{k^{2} - a^{2}}) and (k,k2a2)(k, - \sqrt{k^{2} - a^{2}}).

Hence tanθ1 =k2a2ka+k2a2ka1k2a2(ka)2=1ak2a2\frac{\frac{\sqrt{k^{2} - a^{2}}}{k - a} + \frac{\sqrt{k^{2} - a^{2}}}{k - a}}{1 - \frac{k^{2} - a^{2}}{(k - a)^{2}}} = - \frac{1}{a}\sqrt{k^{2} - a^{2}}.

Also tan θ2 =1ak2a2\frac{1}{a}\sqrt{k^{2} - a^{2}} = –tan θ1 = tan (π – θ1)

⇒ θ1 + θ2 = π