Solveeit Logo

Question

Question: If A + C = B, then tan A tan B tan C = A) tan A + tan B + tan C B) tan B – tan C – tan A C) ta...

If A + C = B, then tan A tan B tan C =
A) tan A + tan B + tan C
B) tan B – tan C – tan A
C) tan A + tan B – tan C
D) – (tan A + tan B + tan C)

Explanation

Solution

Hint: In this problem we will use the trigonometric formula of tan (A+B). Then we will use the given condition (A + C = B) to get the solution.

Complete step-by-step answer:
Now, it is given that A + C = B, so we will use this condition to find the solution of the given problem.
Now, tan (A + B) = tan A +  tan B1  tan A tan B\tan {\text{ (A + B) = }}\dfrac{{{\text{tan A + }}{\text{ tan B}}}}{{1{\text{ }} - {\text{ tan A tan B}}}}
Now in the above property we will put the values, A = A and B = C.so, we get
tan (A + C) = tan A +  tan C1  tan A tan C\tan {\text{ (A + C) = }}\dfrac{{{\text{tan A + }}{\text{ tan C}}}}{{1{\text{ }} - {\text{ tan A tan C}}}} As, A + C = B, so the above equation can be written as
tan B = tan A +  tan C1  tan A tan C\tan {\text{ B = }}\dfrac{{{\text{tan A + }}{\text{ tan C}}}}{{1{\text{ }} - {\text{ tan A tan C}}}}
Now cross- multiplying both sides, we get
tan B(1 - tan A tan C) = tan A + tan C\tan {\text{ B(1 - tan A tan C) = tan A + tan C}}
tan B - tan A tan B tan C = tan A + tan C\tan {\text{ B - tan A tan B tan C = tan A + tan C}}
tan A tan B tan C = tan B - tan A - tan C{\text{tan A tan B tan C = tan B - tan A - tan C}}
Which can be written as tan A tan B tan C = tan B - tan C - tan A{\text{tan A tan B tan C = tan B - tan C - tan A}}.
So, option (B) is the correct answer.

Note: Such problems look difficult but they are very easy to solve. You just have to apply a property and use the condition given in the question. By applying the condition in the property, you will get the correct answer by doing a simple calculation. Just make sure that you use proper identity and do all the calculations correctly.