Solveeit Logo

Question

Question: If a bullet of mass \[5gm\] moving with velocity \[100m/s\], penetrates the wooden block up to \[6cm...

If a bullet of mass 5gm5gm moving with velocity 100m/s100m/s, penetrates the wooden block up to 6cm6cm. Then the average force imposed by the bullet on the block is:
A. 8300 NA.\text{ }8300\text{ }N
B. 417 NB.\text{ }417\text{ }N
C. 830 NC.\text{ }830\text{ }N
D. ZeroD.\text{ }Zero

Explanation

Solution

Using Newton's second law of motion we can find the force imposed by the bullet on block.
Here the bullet is penetrating the wooden block due to which its velocity changes or decreases. This retarding velocity is the reason for acceleration.
Formula used:
F=maF=ma
v2u2=2aS{{v}^{2}}-{{u}^{2}}=2aS
12m(Δv)2=FS\dfrac{1}{2}m{{\left( \Delta v \right)}^{2}}=FS

Complete answer:
Given that,
Mass of bullet, m=5g=5×103Kgm=5g=5\times {{10}^{-3}}Kg
Initial velocity u=100m/su=100m/s
Final velocity of bullet v=0v=0
Displacement S=6cm=6×102mS=6cm=6\times {{10}^{-2}}m
The bullet velocity starts retarding when it starts penetrating the wooden block,
Hence there is a deceleration due to the change in velocity.
Let, deceleration of bullet =adeceleration\text{ }of\text{ }bullet\text{ }=-a
Then,
We have the third equation of motion which relates
the initial velocity u, final velocity v, displacement S, and deceleration -a\text{the initial velocity u, final velocity v, displacement S, and deceleration -a} ,
v2u2=2aS{{v}^{2}}-{{u}^{2}}=2aS
Then,
a=v2u22Sa=\dfrac{{{v}^{2}}-{{u}^{2}}}{2S}
Substitute the values ofu, v and S\text{u, v and S}. We get,
a=010022×6×102a=-\dfrac{0-{{100}^{2}}}{2\times 6\times {{10}^{-2}}}
a=10612a=\dfrac{{{10}^{6}}}{12}
We know that,
F=maF=ma
Substituting m and a\text{m and a} we get,
F=5×103×10612F=5\times {{10}^{-3}}\times \dfrac{{{10}^{6}}}{12}
F=416.67F=416.67

So, the correct answer is “Option B”.

Additional Information:
Deceleration is the reverse of acceleration. The rate at which an object speeds up is known as acceleration. But deceleration is the rate at which the object slows down. It only applies to objects which slow down and occurs only when a force is applied against the motion of a body. Here the wooden block is imposing an opposing force against the moving body. That is why its velocity is changed.
Deceleration=Final  VelocityInitial  VelocityTime  takenDeceleration=\dfrac{Final\;Velocity - Initial\;Velocity}{Time\;taken}
It can be denoted as -a\text{-a} where a is the acceleration. The unit of deceleration is the same as that of acceleration (m/s2)\left( \text{m/}{{\text{s}}^{2}} \right).

Note:
Alternate method to solve the question:
Change in kinetic energy = Work doneChange\text{ }in\text{ }kinetic\text{ }energy\text{ }=\text{ }Work\text{ }done
I.e.,
12m(Δv)2=FS\dfrac{1}{2}m{{\left( \Delta v \right)}^{2}}=FS
m= mass of bulletm=~mass\text{ }of\text{ }bullet
Δv=change in velocity\Delta v=change\text{ }in\text{ }velocity
F= forceF=\text{ }force
S= displacementS=\text{ }displacement
Substituting values of m, v and S\text{m, v and S}
We get,
12×5×103×(1000)2=F×6×102\dfrac{1}{2}\times 5\times {{10}^{-3}}\times {{\left( 100-0 \right)}^{2}}=F\times 6\times {{10}^{-2}}
F=25006=417NF=\dfrac{2500}{6}=417N