Solveeit Logo

Question

Physics Question on Motion in a straight line

If a body travels half the distance with velocity v1{{v}_{1}} and the next half with velocity v2{{v}_{2}} its average velocity will be given by

A

v=v1v2v=\sqrt{{{v}_{1}}{{v}_{2}}}

B

v=v1+v12v=\frac{{{v}_{1}}+{{v}_{1}}}{2}

C

v=v1v2v=\frac{{{v}_{1}}}{{{v}_{2}}}

D

2v=1v1+1v2\frac{2}{v}=\frac{1}{{{v}_{1}}}+\frac{1}{{{v}_{2}}}

Answer

2v=1v1+1v2\frac{2}{v}=\frac{1}{{{v}_{1}}}+\frac{1}{{{v}_{2}}}

Explanation

Solution

Average velocity =total distance travelledtotal time taken=\frac{total\text{ }distance\text{ }travelled}{total\text{ }time\text{ }taken} Let the total distance =d=d . \therefore v=dd2v1+dv2v=\frac{d}{\frac{d}{2{{v}_{1}}}+\frac{d}{{{v}_{2}}}} v=dd2(1v1+1v2)v=\frac{d}{\frac{d}{2}\left( \frac{1}{{{v}_{1}}}+\frac{1}{{{v}_{2}}} \right)} Or v=2v1v2v1+v2v=\frac{2{{v}_{1}}{{v}_{2}}}{{{v}_{1}}+{{v}_{2}}} Or v1+v2v1v2=2v\frac{{{v}_{1}}+{{v}_{2}}}{{{v}_{1}}{{v}_{2}}}=\frac{2}{v} Or 1v1+1v2=2v\frac{1}{{{v}_{1}}}+\frac{1}{{{v}_{2}}}=\frac{2}{v}